
- •Кафедра математического анализа в.А. Байков
- •Математика
- •Содержание
- •§1. Скалярные и векторные величины. 5
- •§2. Коллинеарные, равные, компланарные векторы.
- •§3. Линейные операции над векторами.
- •§4. Свойства линейных операций.
- •§5. Разложение вектора по базису. Координаты вектора.
- •§6. Линейная зависимость векторов.
- •§7. Декартова система координат.
- •§8. Линейные пространства.
- •§9. Скалярное произведение векторов.
- •§10. Евклидово пространство.
- •Углом между векторами xиyназывается каждое число, удовлетворяющее условию:
- •§11. Векторное произведение двух векторов.
- •§12. Смешанное произведение трех векторов.
- •2. Прямая линия и плоскость
- •§1. Понятие уравнения линии и поверхности.
- •§2. Уравнения плоскости, уравнения прямой на плоскости и в пространстве.
- •§3. Условия параллельности и перпендикулярности прямых и плоскостей.
- •§4 Основные задачи о прямых и плоскостях.
- •3. Кривые второго порядка
- •4. Матрицы и их применение
- •§1. Основные определения. Действия над матрицами
- •§2. Понятие ранга матрицы
- •§3. Понятие об обратной матрице
- •§4. Решение систем линейных уравнений с помощью обратной матрицы
- •§5. Решение систем линейных уравнений методом исключения неизвестных (метод Гаусса)
- •§6. Линейные преобразования на плоскости и в пространстве
- •§7. Собственные векторы и собственные числа матрицы (линейного преобразования)
- •§8. Собственные числа и собственные векторы в случае симметрической матрицы
- •§9. Приведение квадратичной формы к каноническому виду
- •§10. Приведение общего уравнения второго порядка к каноническому виду
- •5. Поверхности второго порядка
- •§1. Порядок поверхности.
- •§2. Цилиндрические поверхности с образующими, параллельными одной из координатных осей.
- •§3. Уравнение поверхности вращения.
- •§4. Сжатие и растяжение поверхностей.
- •§5. Эллипсоид
- •§6. Однополостный гиперболоид.
- •§7. Двухполостный гиперболоид.
- •§8. Конус.
- •§9. Эллиптический параболоид.
- •§10. Гиперболический параболоид.
- •II.Введение в математический анализ.
- •§2. Абслютная величина действительного числа и её свойства
- •§3. Переменные и постоянные величины.
- •§4. Область изменения переменной величины.
- •§5. Понятие функции.
- •§6. Способы задания функции.
- •§7. Обратная функция и ее график.
- •§8. Понятие сложной функции (функции от функции).
- •§9. Основные характеристики поведения функции.
- •Определение 1.
- •§10. Элементарные функции.
- •§11. Некоторые приемы построения графиков функций.
- •§1.Упорядоченная переменная величина.
- •§2. Предел переменной величины.
- •§3. Предел функции.
- •§4. Бесконечные пределы функции.
- •§5.Ограниченные функции
- •§6.Бесконечно малые величины (б.М.В.) и их основные свойства
- •§7.Основные теоремы о действиях над пределами
- •§8.Неопределенные выражения
- •§9. Другие свойства пределов.
- •§10. Предел функции при х0 (х – радианная мера угла).
- •§11. Число е.
- •§12. Понятие о гиперболических функциях.
- •§13. Натуральные логарифмы
- •§14. Сравнение бесконечно малых величин.
- •§15. Эквивалентные бесконечно малые величины.
- •§16. Непрерывность функции в точке и в промежутке.
- •§17. Точки разрыва функции.
- •§18. Действия над непрерывными функциями.
- •§19. Свойства функций, непрерывных на сегменте
5. Поверхности второго порядка
§1. Порядок поверхности.
В пространстве аналитическая геометрия изучает поверхности, которые в прямоугольных декартовых координатах определяются алгебраическими уравнениями первой, второй и т.д. степени относительно X,Y,Z:
Ax+By+Cz+D=0 (1)
Аx²+By²+Cz²+2Dxy+2Exz+2Fyz+2Mx+2Ny+2Lz+K=0 (2)
и т.п. Порядок уравнения называется порядком поверхности им определяемой. Мы уже видели, что уравнение первого порядка (линейное) (1) всегда задаёт плоскость - это единственная поверхность первого порядка. Поверхностей второго порядка уже много. Рассмотрим наиболее важные из них.
§2. Цилиндрические поверхности с образующими, параллельными одной из координатных осей.
Пусть в плоскости XОY, например, задана некоторая линия L, её уравнение есть F(x,y)=0 (1) . Тогда множество прямых, параллельных оси oz (образующие) и проходящих через точки на L, образуют поверхность S, называемую цилиндрической поверхностью.
Покажем, что уравнение (1), не содержащее переменной z, и есть уравнение этой цилиндрической поверхности S. Возьмём произвольную точку М(x,y,z), принадлежащую S. Пусть образующая, проходя через М пересекает L в точке N. Точка N имеет координаты N(x,y,0), они удовлетворяют уравнению (1), т.к. (·)N принадлежит L. Но тогда и координаты (x,y,z,) удовлетворяют (1), т.к. оно не содержит z. Значит, координаты любой точки цилиндрической поверхности S удовлетворяют уравнению (1). Значит, F(x,y)=0 - уравнение этой цилиндрической поверхности. Кривая L называется направляющей (кривой) цилиндрической поверхности. Заметим, что в пространственной системе L должна задаваться, вообще-то, двумя уравнениями F(x,y)=0 , z=0, как линия пересечения.
Примеры:
Если направляющей служит окружность x²+y²=R², то соответствующая поверхность называется круговым цилиндром.
У
равнения
,
,
задают в пространстве соответственно эллиптический цилиндр, параболический цилиндр, гиперболический цилиндр.
Направляющими в плоскости хоу являются эллипс, парабола, гипербола. Очевидно, уравнения F=(y,z)=0 и F(x,z)=0 задают соответственно цилиндрические поверхности с образующими параллельными оси OX и OY. Их направляющие лежат в плоскостях YOZ и XOZ соответственно.
Замечание.
Цилиндрическая поверхность не
обязательно является поверхностью
второго порядка. Например,
есть цилиндрическая поверхность 3го
порядка, а уравнениеy=sin(x)
задаёт синусоидальный цилиндр, которому
никакого порядка не приписывают, это
вообще, не алгебраическая поверхность.
§3. Уравнение поверхности вращения.
Некоторые
поверхности 2го порядка являются
поверхностями вращения. Пусть в плоскости
YOZ лежит некоторая кривая L
F(y,z)=0(1).
Выясним, каково будет уравнение
поверхности S,
образованной вращением кривой (1) вокруг
оси oz.
Возьмем
на поверхности S
произвольную точку M(x,y,z).
Ее можно считать полученной из (.) N
принадлежащей L
, тогда аппликаты точек M
и N
равны (=z).
Ордината точки N
является тут
радиусом вращения, потому
.Но С(0,0,z)
и потому
.
Но точка N
лежит на кривой и поэтому её координаты
ей удовлетворяют. Значит
(2)
. Уравнению
(2) удовлетворяют координаты
поверхности вращения S.
Значит (2) и есть уравнение поверхности
вращения. Знаки «+» или «-» берутся в
зависимости от того в какой части
плоскости YOZ размещается кривая (1), где
у>0 или
.
Итак, правило: Чтобы найти уравнение поверхности, образованной вращением кривой L вокруг оси OZ, нужно в уравнении кривой заменить переменную у
на
Аналогично составляются уравнения поверхностей вращения вокруг оси OX и OY.