- •1. Иерархия технических средств асутп
- •2. Способы обработки и передачи информации и задачи, решаемые на уровне датчиков и исполнительных механизмов.
- •3. Способы обработки и передачи информации и задачи, решаемые на уровне усо и контроллеров с жесткой логикой
- •4. Способы обработки и передачи информации и задачи, решаемые на уровне плк.
- •11. Конфигурация трм-148.
- •12. Основные характеристики плк (Advantech, Овен и др.).
- •13. Основные характеристики модулей усо (Advantech, Овен и др.).
- •16. Особенности организации последовательной линии передачи информации.
- •17. Основные характеристики интерфейса rs485
- •20. Проектирующие подсистемы средств ап
- •21. Понятие блочно-иерархической структуры проектируемых объектов
- •22. Обслуживающие подсистемы ап
- •23. Привести пример блочно-иерархической структуры в представлении об объекте металлургической (пищевой) промышленности (?????не уверенна!!!)
16. Особенности организации последовательной линии передачи информации.
Обмен данными с ВУ по последовательным линиям связи широко используется в микроЭВМ, особенно в тех случаях, когда не требуется высокой скорости обмена. Вместе с тем применение в них последовательных линий связи с ВУ обусловлено двумя важными причинами. Во-первых, последовательные линии связи просты по своей организации: два провода при симплексной и полудуплексной передаче и максимум четыре - при дуплексной. Во-вторых, в микроЭВМ используются внешние устройства, обмен с которыми необходимо вести в последовательном коде.
В современных микроЭВМ применяют, как правило, универсальные контроллеры для последовательного ВВ, обеспечивающие как синхронный, так и асинхронный режим обмена данными с ВУ.
17. Основные характеристики интерфейса rs485
RS-485 (англ. Recommended Standard 485), EIA-485 (англ. Electronic Industries Alliance-485) — стандарт физического уровня для асинхронного интерфейса.
Регламентирует электрические параметры полудуплексной многоточечной дифференциальной линии связи типа «общая шина».
Стандарт приобрел большую популярность и стал основой для создания целого семейства промышленных сетей широко используемых в промышленной автоматизации.
Стандарт RS-485 совместно разработан двумя ассоциациями: Ассоциацией электронной промышленности (EIA — Electronics Industries Association) и Ассоциацией промышленности средств связи (TIA — Telecommunications Industry Association).
Ранее EIA маркировала все свои стандарты префиксом «RS» (англ. Recommended Standard — Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил «RS» на «EIA/TIA» с целью облегчить идентификацию происхождения своих стандартов.
Технические характеристики интерфейса RS-485
В стандарте RS-485 для передачи и приёма данных используется одна витая пара проводов, иногда сопровождаемая экранирующей оплеткой или общим проводом. Передача данных осуществляется с помощью дифференциальных сигналов. Разница напряжений между проводниками одной полярности означает логическую единицу, разница другой полярности — ноль. Стандарт RS-485 оговаривает только электрические и временные характеристики интерфейса. Стандарт RS-485 не оговаривает:
параметры качества сигнала (допустимый уровень искажений, отражения в длинных линиях)
типы соединителей и кабелей,
гальваническую развязку линии связи,
протокол обмена.
19. Роль и значение автоматизированного проектирования. Автоматизация проектирования занимает особое место среди информационных технологий. Во-первых, автоматизация проектирования — синтетическая дисциплина, ее составными частями являются многие другие современные информационные технологии. Так, техническое обеспечение систем автоматизированного проектирования (САПР) основано на использовании вычислительных сетей и телекоммуникационных технологий, в САПР используются персональные компьютеры и рабочие станции. Математическое обеспечение САПР отличается богатством и разнообразием используемых методов вычислительной математики, статистики, математического программирования, дискретной математики, искусственного интеллекта. Во-вторых, знание основ автоматизации проектирования и умение работать со средствами САПР требуется практически любому инженеру-разработчику. Компьютерами насыщены проектные подразделения, конструкторские бюро и офисы. Работа конструктора за обычным кульманом, расчеты с помощью логарифмической линейки или оформление отчета на пишущей машинке стали анахронизмом. Предприятия, ведущие разработки без САПР или лишь с малой степенью их использования, оказываются неконкурентоспособными как вследствие больших материальных и временных затрат на проектирование, так и из-за невысокого качества проектов. К настоящему времени создано большое число программно-методических комплексов для САПР с различной степенью специализации и прикладной ориентацией. В результате автоматизация проектирования стала необходимой составной частью подготовки инженеров разных специальностей; инженер, не владеющий знаниями и не умеющий работать в САПР, не может считаться полноценным специалистом.
