- •В. Л. Грешта о. В. Климов, о. В. Лисиця, л. П. Степанова кольорові метали і сплави
- •І. Мідь та сплави на її основі
- •1.1 Латуні
- •1.2 Бронзи
- •1.3 Мідно-нікелеві сплави
- •1.4 Спеціальні мідні сплави
- •2. Алюміній та його сплави
- •2.1 Сплави на основі алюмінію. Маркування
- •2.2 Термічна обробка алюмінієвих сплавів
- •2.3 Термомеханічна обробка (тмо) алюмінієвих сплавів
- •2.4 Захист сплавів алюмінію від корозії
- •2.5 Деформівні сплави, які не зміцнюються термічною обробкою
- •2.6 Деформівні сплави, які зміцнюються термічною обробкою
- •1 Сплав – 1915 (4,0…5,0% Zn; 1,0…1,8% Mg; 0,2…0,7% Mn;
- •2 Сплав – в92ц (2,9…3,6% Zn; 3,9…4,6% Mg; 0,6…1,0% Mn; 0,1…0,2% Zr)
- •2.7 Ливарні алюмінієві сплави
- •2.8 Сплави, що отримують за технологією порошкової металургії
- •3. Титан та сплави на його основі
- •3.1 Взаємодія титану з домішками та легувальними елементами
- •3.2 Маркування титанових сплавів
- •3.3 Фазові перетворення в титанових сплавах
- •3.4 Класифікація титанових сплавів
- •3.5 Термічна обробка титанових сплавів
- •3.6 Загальна характеристика титанових сплавів
- •3.6.1 Деформівні сплави
- •3.6.2 Ливарні сплави
- •3.7 Використання титанових сплавів
- •3.8 Алюмініди титану та сплави на їх основі
- •4. Магній та сплави на його основі
- •4.1 Взаємодія магнію з домішками та легувальними елементами
- •4.2 Маркування магнієвих сплавів
- •4.3 Класифікація магнієвих сплавів
- •4.4 Деформівні магнієві сплави
- •4.5 Ливарні магнієві сплави
- •4.6 Термічна обробка
- •4.7 Використання магнієвих сплавів
- •5. Берилій
- •5.1 Сплави на основі берилію
- •6. Вальницеві сплави (антифрикційні матеріали)
- •6.1 Класифікація антифрикційних матеріалів
- •6.3 Антифрикційні сплави на основі цинку
- •6.4 Алюмінієві антифрикційні сплави
- •Контрольні запитання для самоперевірки Мідь та сплави на її основі
- •Алюміній та його сплави
- •Магній та його сплави
- •Берилій
- •Вальницеві сплави (антифрикційні матеріали)
- •Список використаної літератури
- •Додатки Дадаток 1. Мідь та сплави на основі міді хімічний склад (%) та використання технічної міді (гост 859-2001)
- •Хімічний (%, решта Zn) склад, механічні властивості
- •Хімічний склад (%), механічні властивості та призначення деформівних спеціальних латуней (гост 15527-2004)
- •Хімічний склад (%), механічні властивості
- •Хімічний склад (%, Сu – основа), механічні властивості
- •Хімічний склад (%, Сu - основа), механічні властивості
- •Хімічний склад (%, Сu – основа), механічні властивості
- •Хімічний склад (%, Сu – основа), механічні властивості
- •Хімічний склад (%, Сu – основа), механічні властивості
- •Хімічний склад (%, Сu – основа) та призначення деформівних
- •Хімічний склад (%, Сu – основа), механічні властивості
- •Х імічний склад (%), механічні властивсті та призначення
- •Додаток 2. Алюміній та сплави на основі алюмінію промислові марки алюмінію (гост 4784-97)
- •Хімічний склад сплавів д20, д21, ак2 системи Al-Cu-Mg
- •Механічні властивості та призначення сплавів системи Al-Mg-Si
- •Механічні властивості та призначення сплавів системи Al-Zn-Mg
- •Механічні властивості сплавів
- •Рекомендовані режими термічної обробки
- •Додаток 3. Титан та сплави на основі титану
- •Х мічний склад ливарних титанових сплавів
- •Загальна характеристика деформівних титанових сплавів [10]
- •З агальна характеристика ливарних титанових сплавів [10]
- •Додаток 4. Магній та сплави на основі магнію хімічний склад магнію, % (гост 804-93)
- •6.050403 «Інженерне матеріалознавство»
3.6.2 Ливарні сплави
Плавлення та розливку титанових сплавів внаслідок активної взаємодії титану при підвищеній температурі з газами атмосфери (особливо в рідкому стані) та з формовочними і вогнетривкими матеріалами проводять у вакуумі або в захисному середовищі.
В структурі ливарних сплавів відсутня евтектика, але інтервал кристалізації становить 50…70°С, що зумовлює задовільні ливарні властивості. Рідкотекучість титана майже така як і у вуглецевої сталі, але отримати великогабаритні відливки з титанових сплавів важче ніж зі сталі. Це пояснюється більш низьким теплоутриманням рідкого титану та невисокою температурою перегріву розплаву в умовах дугового плавлення, що призводить до дуже швидкого охолодження та затвердівання сплаву. Лінійна усадка титану становить 1,5% в керамічну форму, 2% – в металеву форму. Об’ємна усадка – 3%.
Для фасонного литва, як правило, використовують сплави які за своїм хімічним складом близькі до деформівних. Тільки в ливарних сплавах допускається більший вміст домішок ніж в деформівних. Хімічний склад ливарних сплавів наведено в додатку 3.
Особливість структури титанових сплаві в литому стані пов’язана з технологією виплавки (вакуумна-дугова плавка з витратним електродом). Фактори, які впливають на структуру: значний перегрів розплаву та фазова перекристалізація в процесі охолодження. Тому титанові сплави в литому стані мають грубозернисту структуру, особливо в зоні стовбчастих кристалів. Збільшення концентрації легувальних елементів та зменшення перегріву супроводжується утворенням більш дрібної структури [10].
Внутрішньозеренна структура титанових сплавів в литому стані визначається хімічним складом сплаву та швидкістю охолодження. Мікроструктура зливків технічно чистого титану, однофазних -сплавів, а також мало- та середньолегованих (+)-сплавів характеризується грубою пластинчастою внутрішньозеренною будовою.
Збільшення концентрації легувальних елементів та підвищення швидкості охолодження приводить до зменшення товщини -пластин та розміру -колоній, які мають однакове або близьке орієнтування.
Мікроструктура титанового сплаву ВТ5Л в литому стані наведена на рис.3.28. Характеризується пластинчатою -фазою всередині великого вихідного зерна -фази.
Найбільш поширений сплав ВТ5Л зі структурою -фази. Завдяки алюмінію відливки мають задовільний рівень пластичності та ударну в’язкість. Відливки зі сплаву ВТ5Л не відпалюють.
Рисунок 3.28 – Мікроструктура сплави ВТ5Л (литий стан), 340
Для решти сплавів властивості можуть бути поліпшені проведенням відпалення, що забезпечує стабілізацію структури та зменшує рівень залишкових напружень. Температура відпалення залежить від хімічного складу сплавів. Для ВТ14Л tвідп.=850С, швидкість охолодження 2…4С/хвил. Відпалення сплаву ВТ3-1Л передбачає витримку при 650С впродовж 1…2 год.
Ливарні сплави порівняно із деформівними аналогічного хімічного складу мають більш низькі механічні властивості. Зміцнювальна термічна обробка суттєво погіршує пластичність ливарних сплавів тому її не проводять.
