- •3.Принципы защиты от газовой коррозии.
- •4.Методы защиты от коррозии.
- •5. Структура химического предприятия. Классификация технологических процессов и оборудования.
- •2. Классификация процессов
- •3. Классификация и виды технологического оборудования
- •6.Легированные стали, применение в химическом машиностроении
- •8.Весовые дозаторы. Устройство, применение.
- •9.Весовые дозаторы периодического действия, устройство и применение.
- •10.Винтовые конвейера. Конструкция, применение, производительность.
- •11.Ленточные конвейера. Конструкция, расчет производительности.
- •14.Рабочие, расчетные, испытательные параметры. Аппараты, подведомственные Промтехнадзору, особенности их испытаний.
- •15.Трубопроводы, основные элементы, выбор труб.
- •16.Критерии прочности материалов, коэффициент запаса, влияние температуры.
- •2.2.1. Определение допускаемых напряжений
- •2.2.2 Прибавки к номинальным расчетным толщинам
- •17.Методы защиты от коррозии.
- •18.Принципы подбора оборудования.
- •19.Выбор материала и способы защиты от коррозии.
- •20.Аппараты объемного типа – расчет объема с учетом степени заполнения, времени пребывания и запаса производительности.
- •26.Прокладочные материалы.
- •27. Конические днища, применение.
- •27.Элеваторы, их устройство и применение.
- •28.Выбор материала и способы его защиты от коррозии.
- •30.Машины для перемещения и сжатия газов., типы, конструкция,областиприменения.
- •31.Установки пневмотранспорта, их виды, достоинства и недостатки, области применения.
- •32.Отстойники и фильтры для разделения жидкости и твердого материала.
- •33.Затворы для аппаратов высокого давления.
- •34.Эллиптические днища, области применения.
- •35.Металлы и сплавы для химического машиностроения.
- •36.Огнеупорные и теплоизоляционные материалы, применяемые в химической промышленности.
- •37.Плоские днища и крышки, области применения.
- •38.Насосы, конструкция, применение, выбор.
- •39.Вентиляторы центробежные, конструкции, применение, выбор.
- •40.Тарельчатый питатель, устройство применение.Н
- •41.Конденсаторы линейного расширения трубопроводов: сальниковый, линзовый и р-образный, конструкция, применение.
- •42.Задвижки, вентили и предохранительные клапаны: конструкция и применение.
- •43.Арматура трубопроводов: конструкция, области применения.
- •30Нж20бк – задвижка запорная (30), с корпусом из нержавеющей стали (нж), клиновая, фланцевая с выдвижным шпинделем без привода по каталогу 20, без вставок уплотнительных колец (бк).
- •44.Значение оборудования в производстве, его классификация.
- •2. Классификация процессов
- •3. Классификация и виды технологического оборудования
- •45.Барабанный (секторный) питатель. Конструкция, применение.
- •47.Критерии прочности, коэффициенты запаса прочности и условия их использования.
- •50.Трубопроводы. Принцип выбора труб. Расчет.
- •52.Поршневые (объемные) насосы, конструкция, области применения.
- •53.Органические коррозионно-устойчивые материалы.
- •54.Ленточный, (пластинчатый) питатель. Конструкция, применение.
- •55.Шнековый питатель, устройство, области применения.
- •56.Требования к оборудованию.
- •57.Затворы аппаратов высокого давления с упругой деформацией. Конструкция.
- •58.Влияние различных факторов на скорость коррозии (температуры, природы и концентрации реагентов, особенностей конструкции).
- •61.Бункеры и затворы для сыпучих материалов.
- •62.Затворы аппаратов высокого давления с пластичной деформацией. Конструкция.
- •63.Аппараты для разделения гетерогенных систем (газ – твердое).
- •64.Расчет колонных аппаратов на прочность и устойчивость.
- •65.Химическая коррозия.
- •66.Типовые конструкции гладких цилиндрических обечаек. Требования к их конструкции и изготовлению.
- •67.Расчет гладких цилиндрических обечаек на наружное давление.
- •68.Расчет гладких цилиндрических обечаек под действием осевой сжимающей силы, изгибающего момента и наружного давления.
- •1.Программно-целевая структура проектирования.
- •2.Методы проектирования, их характеристика и сравнение.
- •3.Генеральный план предприятия. Основные принципы и стадии его проектирования.
- •4.Генеральный план. Зональный принцип его формирования и характеристика отдельных зон.
- •5.Генеральный план. Характеристика объектов, включаемых в состав предприятия.
- •6.Предпроектные работы. Состав и содержание тэо.
- •8.Виды и структура проектных организаций.
- •9.Основные принципы проектирования промышленных зданий.
- •10.Понятие стандартизации и унификации. Унифицированные типовые секции и габаритные схемы.
- •11.Принцип выбора географического местоположения предприятия.
- •12.Принципы выбора этажности и высоты помещения.
- •13.Здания, этажерки и площадки для размещения оборудования.
- •2.2.2.2. Покрытия
- •2.2.2.7 Окна, двери, ворота
- •16.Фундаменты, виды фундаментов и их назначение
- •20.Способы компоновки оборудования, их характеристика.
- •21.Последовательность выполнения компоновки и общие принципы размещения технологического оборудования.
- •22.Характеристика помещений, включаемых в состав производства, и особенности их компоновки.
- •23,24.Характеристика открытого и закрытого варианта компоновки оборудования.
- •25.Сетка разбивочных осей, основные параметры промышленных зданий.
- •4 Указывают под полкой линии-выноски, либо на полке
- •28.Генеральный план предприятия. Основные принципы и стадии его проектирования
- •29.Основные принципы проектирования промышленных зданий.
- •30.Понятие проект. Характеристика методов проектирования
52.Поршневые (объемные) насосы, конструкция, области применения.
Рабочий орган поршневых насосов – поршень – совершает в цилиндре возвратно-поступательные движения, сообщая перекачиваемой жидкости избыточное давление. Когда рабочий поршень выполнен в виде удлиненного поршня (плунжера), насос называют плунжерным, в этом случае уплотнение между плунжером и цилиндром лучше. Такой насос рекомендован для перекачивания небольших объемов жидкости при высоких давлениях, а также для высоковязких жидкостей (в аммиачном производстве для подачи углеаммонийных солей, для распыления жидкостей и плавов на форсунки).
К достоинствам данных насосов можно отнести возможность создания высоких давлений (35 МПа и более); к недостаткам – неравномерность подачи, громоздкость, сложность. Работа насоса характеризуется таки параметром, как степень неравномерности подачи:
m = Qmax / Qср,
где Qmax – максимальная подача насоса; Qср – средняя подача насоса.
Поршневые насосы могут быть одинарного (m = 3,14), двойного (m = 1,5) и тройного (m = 1,05; триплекс-насос) действия. Триплекс-насос представляет собой три плунжерных насоса одинарного действия, приводимых в движение от одного электрического двигателя, кривошипы их расположены под углом 120°.
Высота всасывания поршневого насоса рассчитывается по формуле
hвс ≤
где Ра – атмосферное давление; ρж – плотность жидкости; Рж – давление насыщенных паров жидкости; h1 и h2 – потери напора.
Обозначения поршневых насосов
Пример: РКС 1,5/25.
РКС – тип насоса согласно ГОСТ 12052–77:
– ХПНП – химический поршневой паровой;
– Х – химический;
– ХТр – химический трехцилиндровый с регулируемой подачей;
– РКС – регулируемый для соляной и серной кислот;
– 1,5 – подача, м3/ч;
– 25 – давление нагнетания, атм.
Подачу жидкости поршневым насосом регулируют вентилем на перепускной линии, т. е. линии, соединяющей всасывающий и нагнетающий трубопроводы.
Пуск насоса осуществляется в следующей последовательности: открывают задвижку на всасывающей линии, затем на нагнетательной линии и перепускной; включают электродвигатель и после установки необходимой частоты вращения регулируют перепускную задвижку.
Поршневые насосы выбираются по каталогу, где указаны следующие параметры:
Марка |
Подача, м3/ч |
Давление нагнетания, МПа |
Число двойных ходов в минуту |
Ход поршня, мм |
Диаметр поршня, мм |
53.Органические коррозионно-устойчивые материалы.
ОНМ – это органические материалы на основе полимеризационных смол, битумов, кеков, резины (пластмассы, лаки, клей и т. д.). Механические свойства и коррозионная устойчивость их изменяется в широких пределах. Особенность – низкая теплопроводность и малая устойчивость в среде сильных окислителей.
Ведущее место среди ОНМ занимают графитовые материалы (ГМ).
Графит инертен ко многим агрессивным средам, термостоек и теплопроводен (используется, например, для изготовления выносных теплообменников упарки фосфорной кислоты). Для изготовления химической аппаратуры применяют специальный графит марок ЗХП или АРВ.
Графитопласты (антегмиты) – коррозионно-стойкие, теплопроводные материалы, полученные прессованием графитового порошка с фенолформальдегидной смолой с последующей термообработкой. Их используют для изготовления труб, плитки. Антегмиты различаются марками. Так, марка АТМ–10 стойка ко всем кислым и щелочным средам, не разрушается под действием сильных окислителей.
Фаолит относится к термореактивным пластмассам, представляет собой композицию на основе фенолформальдегидной смолы и кислотостойкого наполнителя (графита, асбеста). Он устойчив к растворам соляной кислоты любых концентраций, серной кислоте, фосфорной кислоте с концентрацией до 80% при температуре до 70°С, к растворам многих солей. Не рекомендован для растворов щелочей и азотной кислоты. Хотя известна специальная композиция кислотощелочестойкого фаолита – фуралит, который стоек к раствору NaOH с концентрацией до 40%, к соляной кислоте и серной кислоте с концентрацией до 28,7% при температуре 120°С.
Винипласт (поливинилхлорид) представляет собой термопластичный конструкционный материал на основе поливинилхлорида с различными добавками. Из него делают листы шириной 2–20 мм, трубы диаметром 6–16- мм, стержни диаметром 5–22 мм. Винипласт обладает высокой химической стойкостью, удовлетворительной прочностью, легко перерабатывается в изделие прессованием. Однако он обладает низкой ударной вязкостью, вследствие чего не может использоваться в условиях вибрации, а также малой теплостойкостью и высоким коэффициентом линейного расширения (в 6 раз больше, чем у стали). Из винипласта изготавливают также и аппараты диаметром 250–1400 мм. При температуре 40°С он устойчив к азотной кислоте, имеющей концентрацию свыше 50%, серной кислоте, NaOH, 40%-й плавиковой и 32%-й гексафторкремниевой кислотам, но при повышении температуры до 60–70°С теряет устойчивость в этих средах.
Фторопласты – фторсодержащие полимерные материалы этиленового ряда. Широкое применение получил фторпласт-4 (тефлон). Он обладает очень высокой химической устойчивостью в любых средах и высокой термостойкостью. Основные недостатки – склонность к ползучести и высокая стоимость марки А, Б, В. Марка А используется для изготовления пленки, Б – крупных изделий, В – мелких изделий.
Температура применения от –296 до 260°С. Фторопласты не склеиваются и не свариваются. Изделия из них (трубы, пленки, плитки и т. д.) изготавливаются методом спекания под давлением. Фторопласты обладают низким коэффициентом трения, поэтому их используют в качестве материала для набивки сальников, прокладок для фланцев. В последнее время их начали использовать как конструкционный материал для изготовления теплообменников, работающих в коррозионно-активных средах.
Полиэтилен находит широкое применение, так как может работать в интервале температур от –70 до 60°С. Устойчив к серной кислоте с концентрацией до 50%, соляной и плавиковой кислотам любой концентрации, щелочам, большинству солей. Обладает низкими газопроницаемостью и влагопоглощением. Применяется для изготовления вентиляторов, труб, арматуры, обкладок для аппаратов, тары. Преимуществом полиэтиленовых труб по сравнению с металлическими является низкая плотность, химическая стойкость, морозостойкость, и, что особенно важно, не разрушаются при замерзании в них воды.
Резина и эбонит находят широкое применение для защиты оборудования от коррозии методом гуммирования. Их получают на основе натурального или синтетического каучука. В сыром виде это механическая смесь каучука, серы, наполнителя и добавок. Мягкие резины содержат 2–4 массовых частей, а эбонит – 30–60 массовых частей серы. Температурные интервал их применения – от –50 до 90°С. Устойчивы в соляной кислоте любой концентрации, в растворах серной кислоты с концентрацией до 70%, а также в атмосфере влажного хлора. Резиновые покрытия отличаются высокой стойкостью к вибрации и перепадам температуры.
Гуммирование используется для защиты емкостных и колонных аппаратов, мешалок, центрифуг, деталей трубопроводов и т. д. Осуществляется путем наложения листового покрытия с последующей его вулканизацией или нанесением слоя раствора резины. Вулканизацию обычно проводят паром. Большие аппараты без давления вулканизируют открытым способом, нагревая покрытие из специальных сортов резины горячей водой.
