- •3.Принципы защиты от газовой коррозии.
- •4.Методы защиты от коррозии.
- •5. Структура химического предприятия. Классификация технологических процессов и оборудования.
- •2. Классификация процессов
- •3. Классификация и виды технологического оборудования
- •6.Легированные стали, применение в химическом машиностроении
- •8.Весовые дозаторы. Устройство, применение.
- •9.Весовые дозаторы периодического действия, устройство и применение.
- •10.Винтовые конвейера. Конструкция, применение, производительность.
- •11.Ленточные конвейера. Конструкция, расчет производительности.
- •14.Рабочие, расчетные, испытательные параметры. Аппараты, подведомственные Промтехнадзору, особенности их испытаний.
- •15.Трубопроводы, основные элементы, выбор труб.
- •16.Критерии прочности материалов, коэффициент запаса, влияние температуры.
- •2.2.1. Определение допускаемых напряжений
- •2.2.2 Прибавки к номинальным расчетным толщинам
- •17.Методы защиты от коррозии.
- •18.Принципы подбора оборудования.
- •19.Выбор материала и способы защиты от коррозии.
- •20.Аппараты объемного типа – расчет объема с учетом степени заполнения, времени пребывания и запаса производительности.
- •26.Прокладочные материалы.
- •27. Конические днища, применение.
- •27.Элеваторы, их устройство и применение.
- •28.Выбор материала и способы его защиты от коррозии.
- •30.Машины для перемещения и сжатия газов., типы, конструкция,областиприменения.
- •31.Установки пневмотранспорта, их виды, достоинства и недостатки, области применения.
- •32.Отстойники и фильтры для разделения жидкости и твердого материала.
- •33.Затворы для аппаратов высокого давления.
- •34.Эллиптические днища, области применения.
- •35.Металлы и сплавы для химического машиностроения.
- •36.Огнеупорные и теплоизоляционные материалы, применяемые в химической промышленности.
- •37.Плоские днища и крышки, области применения.
- •38.Насосы, конструкция, применение, выбор.
- •39.Вентиляторы центробежные, конструкции, применение, выбор.
- •40.Тарельчатый питатель, устройство применение.Н
- •41.Конденсаторы линейного расширения трубопроводов: сальниковый, линзовый и р-образный, конструкция, применение.
- •42.Задвижки, вентили и предохранительные клапаны: конструкция и применение.
- •43.Арматура трубопроводов: конструкция, области применения.
- •30Нж20бк – задвижка запорная (30), с корпусом из нержавеющей стали (нж), клиновая, фланцевая с выдвижным шпинделем без привода по каталогу 20, без вставок уплотнительных колец (бк).
- •44.Значение оборудования в производстве, его классификация.
- •2. Классификация процессов
- •3. Классификация и виды технологического оборудования
- •45.Барабанный (секторный) питатель. Конструкция, применение.
- •47.Критерии прочности, коэффициенты запаса прочности и условия их использования.
- •50.Трубопроводы. Принцип выбора труб. Расчет.
- •52.Поршневые (объемные) насосы, конструкция, области применения.
- •53.Органические коррозионно-устойчивые материалы.
- •54.Ленточный, (пластинчатый) питатель. Конструкция, применение.
- •55.Шнековый питатель, устройство, области применения.
- •56.Требования к оборудованию.
- •57.Затворы аппаратов высокого давления с упругой деформацией. Конструкция.
- •58.Влияние различных факторов на скорость коррозии (температуры, природы и концентрации реагентов, особенностей конструкции).
- •61.Бункеры и затворы для сыпучих материалов.
- •62.Затворы аппаратов высокого давления с пластичной деформацией. Конструкция.
- •63.Аппараты для разделения гетерогенных систем (газ – твердое).
- •64.Расчет колонных аппаратов на прочность и устойчивость.
- •65.Химическая коррозия.
- •66.Типовые конструкции гладких цилиндрических обечаек. Требования к их конструкции и изготовлению.
- •67.Расчет гладких цилиндрических обечаек на наружное давление.
- •68.Расчет гладких цилиндрических обечаек под действием осевой сжимающей силы, изгибающего момента и наружного давления.
- •1.Программно-целевая структура проектирования.
- •2.Методы проектирования, их характеристика и сравнение.
- •3.Генеральный план предприятия. Основные принципы и стадии его проектирования.
- •4.Генеральный план. Зональный принцип его формирования и характеристика отдельных зон.
- •5.Генеральный план. Характеристика объектов, включаемых в состав предприятия.
- •6.Предпроектные работы. Состав и содержание тэо.
- •8.Виды и структура проектных организаций.
- •9.Основные принципы проектирования промышленных зданий.
- •10.Понятие стандартизации и унификации. Унифицированные типовые секции и габаритные схемы.
- •11.Принцип выбора географического местоположения предприятия.
- •12.Принципы выбора этажности и высоты помещения.
- •13.Здания, этажерки и площадки для размещения оборудования.
- •2.2.2.2. Покрытия
- •2.2.2.7 Окна, двери, ворота
- •16.Фундаменты, виды фундаментов и их назначение
- •20.Способы компоновки оборудования, их характеристика.
- •21.Последовательность выполнения компоновки и общие принципы размещения технологического оборудования.
- •22.Характеристика помещений, включаемых в состав производства, и особенности их компоновки.
- •23,24.Характеристика открытого и закрытого варианта компоновки оборудования.
- •25.Сетка разбивочных осей, основные параметры промышленных зданий.
- •4 Указывают под полкой линии-выноски, либо на полке
- •28.Генеральный план предприятия. Основные принципы и стадии его проектирования
- •29.Основные принципы проектирования промышленных зданий.
- •30.Понятие проект. Характеристика методов проектирования
36.Огнеупорные и теплоизоляционные материалы, применяемые в химической промышленности.
Многие процессы протекают при высокой температуре (800–1300°С). Для их проведения необходимы особые конструкционные материалы – огнеупоры и теплоизоляционные материалы.
Огнеупоры в зависимости от исходного сырья делят на шесть групп:
– кремнеземистые (динас);
– алюмосиликатные (шамот);
– магнезиальные (магнезитовые и доломитовые);
– углеродсодержащие;
– оксидные;
– карбидные, баридные, нитридные.
Выбор конкретного материала определяется максимальной рабочей температурой аппарата. По огнеупорности материалы делятся на огнеупорные (1570–1770°С); высокоогнеупорные (1770–2000°С); высшей огнеупорности (свыше 2000°С)
Представители кремнеземистых огнеупоров – динас – изготавливают из кварцитов или песчаников.
Алюмосиликатные огнеупоры – шамот – получили наибольшее распространение в основной химии. Содержат до 46% Al2O3, остальное – SiO2 и примеси. Шамот устойчив к основным и кислым шлакам, а также к резким изменениям температуры. Из шамотных кирпичей изготавливают футеровку топок, печей для сжигания серы, шахтных и тамбурных печей в производстве BaCl и гидроксида натрия.
Шамотные изделия имеют огнеупорность от 1610°С (класс В) до 1730°С (класс А).
Из магнезиальных огнеупоров отметим магнезитовые и доломитовые.
Магнезитовые огнеупоры на 90% состоят из оксида магния. Стойки при температуре 2000°С и выше. Их не разъедают кислые шлаки.
Доломитовые огнеупоры изготавливают из обожженного при 1500–1800°С доломита Са, Mg(CO3)2. Огнеупорность доломитовых изделий – 1870–1920°С.
Пример использования магнезиальных огнеупоров – печи для восстановительного обжига сульфата натрия на сульфид, который обладает сильно щелочными свойствами.
К материалам высшей огнеупорности относят карборунд SiC (огнеупорность – 2100°С), бориды, нитр иды, карбиды, силициды d-элементов (до 2500°С), нитрид кремния Si3N4 (до 3000°С).
Теплоизоляционные материалы. Если температура наружных поверхностей аппаратов и машин больше 45°С, а трубопроводов больше 60°С, то они требуют изоляции. Теплоизоляционные материалы должны отвечать ряду требований:
– обеспечивать заданный температурный режим в аппарате;
– исключать потери теплоты или холода в окружающую среду;
– создавать нормальные санитарно-гигиенические условия для работы персонала;
– быть химически стойкими, дешевыми;
– не вызывать коррозию оборудования.
По способу монтажа и ремонта теплоизоляционные материалы делятся на мастичные, оберточные, мастично-формованные.
Мастичные материалы применяют в виде порошков, которые при затворении в воде принимают вид тестообразной массы.
Оберточные материалы – это рулоны стекло- и шлаковаты, заключаемые между металлическими сетками.
Мастично-формованные материалы изготавливаются в виде готовых изделий определенной формы.
Теплоизоляционные материалы делятся на высоко-, средне- и низкотемпературные.
Высокотемпературные материалы применяют при температурах выше 45°С. К ним относятся асбест, диатомит (в виде кирпичей или добавки в теплоизоляционные смеси), пенобетон, который получают затворением цемента с добавкой пенообразующих веществ, шлаковата.
Среднетемпературные материалы используют при температурах от 150 до 450°С. К таким материалам относятся асбозурит, который на 70% состоит из молотого диатомита, на 15% – из асбеста и на 15% – из шиферных отходов и используется для мастичной изоляции, а также ньювель, который представляет собой смесь 85% жженой магнезии (MgO) и 15% асбеста.
Низкотемпературные материалы используют при температурах не более 150°С. К ним относятся войлок, стекловата, текстильные отходы. Подобные материалы, как правило, склонны к влагопоглащению и быстро разрушаются при воздействии агрессивных сред. К новым материалам этой группы относятся пенопласты, пенополиуретан, пенополистирол и др.
