- •Введение Предмет физики и ее связь с другими науками
- •1.1. Электростатическое поле в вакууме
- •1. Электрический заряд.
- •2. Закон Кулона.
- •3. Напряженность электростатического поля
- •4. Поток вектора .
- •5. Принцип суперпозиции электростатических полей.
- •6. Теорема Гаусса.
- •7. Циркуляция вектора напряженности.
- •8. Потенциальная энергия заряда.
- •9. Потенциал электростатического поля.
- •10. Разность потенциалов
- •11. Связь между напряженностью и потенциалом.
- •12. Эквипотенциальные поверхности.
- •13. Примеры расчета наиболее важных симметричных электростатических полей в вакууме.
- •13.1. Электростатическое поле электрического диполя в вакууме.
- •13.2. Поле равномерно заряженной бесконечной плоскости.
- •13.4. Поле равномерно заряженной сферической поверхности.
- •13.5. Поле объемно заряженного шара.
- •6. Поле равномерно заряженного бесконечного цилиндра (нити)
- •1.2. Электростатическое поле в веществе
- •14. Электростатическое поле в диэлектрической среде
- •15. Поляризованность.
- •16. Диэлектрическая проницаемость среды.
- •17. Электрическое смещение.
- •18. Условия на границе раздела двух диэлектрических сред
- •19. Сегнетоэлектрики.
- •20. Проводники в электростатическом поле.
- •21. Электроемкость.
- •22. Конденсаторы.
- •23. Соединения конденсаторов.
- •24. Энергия системы неподвижных точечных зарядов.
- •25. Энергия заряженного уединенного проводника.
- •26. Энергия заряженного конденсатора.
- •27. Энергия электростатического поля.
- •28. Пондеромоторные силы.
- •1.3. Постоянный электрический ток
- •29. Постоянный электрический ток, сила и плотность тока
- •30. Сторонние силы.
- •31. Электродвижущая сила и напряжение.
- •32. Закон Ома. Электрическое сопротивление.
- •33. Сопротивление соединения проводников:
- •34. Температурная зависимость сопротивления.
- •35. Работа и мощность тока.
- •36. Закон Джоуля–Ленца.
- •37. Закон Ома для неоднородного участка цепи.
- •38. Правила Кирхгофа для разветвленных цепей.
- •Электрические токи в металлах, вакууме и газах.
- •39. Электрические токи в металлах.
- •40. Основные законы электрического тока в классической теории электропроводности металлов.
- •41. Эмиссионные явления.
- •42. Газовые разряды.
- •1.4. Магнитное поле в вакууме
- •2. Рамка с током. Направление магнитного поля.
- •3. Вектор магнитной индукции.
- •4. Макротоки и микротоки.
- •6. Подобие векторных характеристик электростатического и магнитного полей.
- •7. Закон Био–Савара–Лапласа.
- •8. Магнитное поле прямого тока.
- •9. Магнитное поле в центре кругового тока.
- •10. Закон Ампера.
- •11. Взаимодействие параллельных токов.
- •12. Магнитная постоянная.
- •13. Единицы магнитной индукции и напряженности магнитного поля.
- •14. Магнитное поле свободно движущегося заряда.
- •15. Сила Лоренца.
- •16. Движение заряженных частиц в магнитном поле.
- •18. Теорема о циркуляции вектора .
- •19. Магнитное поле соленоида.
- •20. Магнитное поле тороида в вакууме.
- •21. Поток вектора магнитной индукции.
- •22. Теорема Гаусса для магнитного поля в вакууме
- •23. Потокосцепление.
- •24. Работа по перемещению проводника с током в магнитном поле.
- •25. Работа по перемещению контура с током в магнитном поле.
- •1.5. Магнитное поле в веществе
- •37. Магнитные моменты электронов и атомов.
- •39. Намагниченность. Магнитное поле в веществе.
- •40. Закон полного тока для магнитного поля в веществе.
- •41. Условия на границе раздела двух магнетиков.
- •42. Ферромагнетики и их свойства.
- •1.6. Явление электромагнитной индукции
- •26. Опыты Фарадея.
- •27. Закон Фарадея.
- •28. Эдс индукции в неподвижных проводниках.
- •29. Вращение рамки в магнитном поле.
- •30. Вихревые токи (токи Фуко).
- •31. Индуктивность контура.
- •32. Самоиндукция.
- •33. Токи при размыкании и замыкании цепи.
- •34. Взаимная индукция.
- •35. Трансформаторы.
- •36. Энергия магнитного поля.
- •1.7. Электромагнитные колебания
- •Свободные гармонические колебания в колебательном контуре
- •Дифференциальное уравнение свободных затухающих электромагнитных колебаний в электрическом колебательном контуре и его решение.
- •Дифференциальное уравнение вынужденных колебаний электромагнитных и его решение
- •Амплитуда и фаза вынужденных электромагнитных колебаний. Резонанс.
- •1.8. Переменный электрический ток
- •Резонанс напряжений
- •Резонанс токов
- •Мощность, выделяемая в цепи переменного тока
- •1.9. Уравнения максвелла. Электромагнитные волны
- •43. Вихревое электрическое поле.
- •44. Ток смещения.
- •45. Полная система уравнений Максвелла.
- •47. Электромагнитные волны.
- •48. Поперечность электромагнитных волн.
- •50. Энергия электромагнитных волн.
Дифференциальное уравнение свободных затухающих электромагнитных колебаний в электрическом колебательном контуре и его решение.
Рассмотрим свободные затухающие колебания – колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие омических потерь и излучения электромагнитной энергии в электрических колебательных системах.
Закон затухания колебаний определяется свойствами колебательных систем. Обычно рассматривают линейные системы – идеализированные реальные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяются. Линейной системой является колебательный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения.
Дифференциальное уравнение свободных затухающих колебаний заряда в контуре (при R 0) имеет вид
,
(6.1)
где выражение
называется собственной частотой
колебательной системы (циклическая
частота свободных незатухающих
колебаний той же колебательной системы,
т. е. при =0 (при
отсутствии потерь энергии));
- коэффициент затухания.
Решение уравнения (6.1) рассмотрим в виде
(6.2)
где y=y(t). После нахождения первой и второй производных выражения (6.2) и подстановки их в (6.1) получим
(6.3)
Решение уравнения (6.3) зависит от знака коэффициента перед искомой величиной. Рассмотрим случай, когда этот коэффициент положителен:
(6.4)
Тогда получим
уравнение типа (2.1)
,
решением которого является функция
y=А0cos(t+).
Таким образом, решение уравнения (6.1) в
случае малых затуханий (
)
(6.5)
где
(6.6)
– амплитуда
затухающих колебаний, а Q0–
начальная амплитуда. Это значит, что
колебания заряда совершаются по закону
(6.5) с частотой
меньшей собственной частоты контура
0. Зависимость
(6.5) показана на рис. 208 сплошной линией,
а зависимость (6.6) – штриховыми линиями.
Промежуток времени
=1/, в течение которого
амплитуда затухающих колебаний
уменьшается в е раз, называется
временем релаксации.
Затухание нарушает
периодичность колебаний, поэтому
затухающие колебания не являются
периодическими. Однако если затухание
мало, то можно условно пользоваться
понятием периода как промежутка
времени между двумя последующими
максимумами (или минимумами) колеблющейся
физической величины (см. рис.). Тогда
период затухающих колебаний с учетом
формулы (6.4) равен |
|
Если A(t) и А(t + Т) – амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на период, то отношение
называется декрементом затухания, а его логарифм
(6.7)
– логарифмическим декрементом затухания; Ne – число колебаний, совершаемых за время уменьшения амплитуды в е раз.
Для характеристики
колебательной системы пользуются
понятием добротности
,
которая при малых значениях
логарифмического декремента равна
или
(6.8)
(так как затухание
мало (
),
то T принято равным
Т0).
Из формулы (6.8) следует, что добротность пропорциональна числу колебаний Ne, совершаемых системой за время релаксации.
В заключение отметим, что при увеличении коэффициента затухания период затухающих колебании растет и при =0 обращается в бесконечность, т. е. движение перестает быть периодическим. В данном случае колеблющаяся величина асимптотически приближается к нулю, когда t. Процесс не будет колебательным. Он называется апериодическим.
