- •Введение Предмет физики и ее связь с другими науками
- •1.1. Электростатическое поле в вакууме
- •1. Электрический заряд.
- •2. Закон Кулона.
- •3. Напряженность электростатического поля
- •4. Поток вектора .
- •5. Принцип суперпозиции электростатических полей.
- •6. Теорема Гаусса.
- •7. Циркуляция вектора напряженности.
- •8. Потенциальная энергия заряда.
- •9. Потенциал электростатического поля.
- •10. Разность потенциалов
- •11. Связь между напряженностью и потенциалом.
- •12. Эквипотенциальные поверхности.
- •13. Примеры расчета наиболее важных симметричных электростатических полей в вакууме.
- •13.1. Электростатическое поле электрического диполя в вакууме.
- •13.2. Поле равномерно заряженной бесконечной плоскости.
- •13.4. Поле равномерно заряженной сферической поверхности.
- •13.5. Поле объемно заряженного шара.
- •6. Поле равномерно заряженного бесконечного цилиндра (нити)
- •1.2. Электростатическое поле в веществе
- •14. Электростатическое поле в диэлектрической среде
- •15. Поляризованность.
- •16. Диэлектрическая проницаемость среды.
- •17. Электрическое смещение.
- •18. Условия на границе раздела двух диэлектрических сред
- •19. Сегнетоэлектрики.
- •20. Проводники в электростатическом поле.
- •21. Электроемкость.
- •22. Конденсаторы.
- •23. Соединения конденсаторов.
- •24. Энергия системы неподвижных точечных зарядов.
- •25. Энергия заряженного уединенного проводника.
- •26. Энергия заряженного конденсатора.
- •27. Энергия электростатического поля.
- •28. Пондеромоторные силы.
- •1.3. Постоянный электрический ток
- •29. Постоянный электрический ток, сила и плотность тока
- •30. Сторонние силы.
- •31. Электродвижущая сила и напряжение.
- •32. Закон Ома. Электрическое сопротивление.
- •33. Сопротивление соединения проводников:
- •34. Температурная зависимость сопротивления.
- •35. Работа и мощность тока.
- •36. Закон Джоуля–Ленца.
- •37. Закон Ома для неоднородного участка цепи.
- •38. Правила Кирхгофа для разветвленных цепей.
- •Электрические токи в металлах, вакууме и газах.
- •39. Электрические токи в металлах.
- •40. Основные законы электрического тока в классической теории электропроводности металлов.
- •41. Эмиссионные явления.
- •42. Газовые разряды.
- •1.4. Магнитное поле в вакууме
- •2. Рамка с током. Направление магнитного поля.
- •3. Вектор магнитной индукции.
- •4. Макротоки и микротоки.
- •6. Подобие векторных характеристик электростатического и магнитного полей.
- •7. Закон Био–Савара–Лапласа.
- •8. Магнитное поле прямого тока.
- •9. Магнитное поле в центре кругового тока.
- •10. Закон Ампера.
- •11. Взаимодействие параллельных токов.
- •12. Магнитная постоянная.
- •13. Единицы магнитной индукции и напряженности магнитного поля.
- •14. Магнитное поле свободно движущегося заряда.
- •15. Сила Лоренца.
- •16. Движение заряженных частиц в магнитном поле.
- •18. Теорема о циркуляции вектора .
- •19. Магнитное поле соленоида.
- •20. Магнитное поле тороида в вакууме.
- •21. Поток вектора магнитной индукции.
- •22. Теорема Гаусса для магнитного поля в вакууме
- •23. Потокосцепление.
- •24. Работа по перемещению проводника с током в магнитном поле.
- •25. Работа по перемещению контура с током в магнитном поле.
- •1.5. Магнитное поле в веществе
- •37. Магнитные моменты электронов и атомов.
- •39. Намагниченность. Магнитное поле в веществе.
- •40. Закон полного тока для магнитного поля в веществе.
- •41. Условия на границе раздела двух магнетиков.
- •42. Ферромагнетики и их свойства.
- •1.6. Явление электромагнитной индукции
- •26. Опыты Фарадея.
- •27. Закон Фарадея.
- •28. Эдс индукции в неподвижных проводниках.
- •29. Вращение рамки в магнитном поле.
- •30. Вихревые токи (токи Фуко).
- •31. Индуктивность контура.
- •32. Самоиндукция.
- •33. Токи при размыкании и замыкании цепи.
- •34. Взаимная индукция.
- •35. Трансформаторы.
- •36. Энергия магнитного поля.
- •1.7. Электромагнитные колебания
- •Свободные гармонические колебания в колебательном контуре
- •Дифференциальное уравнение свободных затухающих электромагнитных колебаний в электрическом колебательном контуре и его решение.
- •Дифференциальное уравнение вынужденных колебаний электромагнитных и его решение
- •Амплитуда и фаза вынужденных электромагнитных колебаний. Резонанс.
- •1.8. Переменный электрический ток
- •Резонанс напряжений
- •Резонанс токов
- •Мощность, выделяемая в цепи переменного тока
- •1.9. Уравнения максвелла. Электромагнитные волны
- •43. Вихревое электрическое поле.
- •44. Ток смещения.
- •45. Полная система уравнений Максвелла.
- •47. Электромагнитные волны.
- •48. Поперечность электромагнитных волн.
- •50. Энергия электромагнитных волн.
34. Взаимная индукция.
Взаимной индукцией называется явление возбуждения ЭДС электромагнитной индукции в одной электрической цепи при изменении электрического тока в другой цепи или при изменении взаимного расположения этих двух цепей.
Рассмотрим два неподвижных контура 1 и 2 с токами 1 I и 2 I , расположенных достаточно близко друг от друга. При протекании в контуре 1 тока 1 I магнитный поток пронизывает второй контур: Φ21= L21·I1 аналогично Φ12= L12·I2. |
|
Коэффициенты пропорциональности L21 и L12 равны друг другу L21 = L12 = L и называются взаимной индуктивностью контуров.
При изменении силы тока в одном из контуров, в другом индуцируется ЭДС:
Ԑi2
,
Ԑi1
Взаимная индуктивность контуров зависит от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды.
Для примера рассчитаем взаимную индуктивность двух катушек, намотанных на тороидальный сердечник.
Первая
катушка с числом витков N1
и током I1создает
поле
|
|
Тогда
полный магнитный поток (потокосцепление)
сквозь вторичную обмотку, содержащую
N2
витков:
.
Поскольку поток Ψ создается током I1,
то
Данное устройство является примером трансформатора.
35. Трансформаторы.
Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Переменный ток I1 создает в первичной обмотке переменное магнитное поле. Это вызывает во вторичной обмотке появление ЭДС взаимной индукции. При этом:
Ԑ2=
-
Ԑ1,
где N1и N2– число витков в первичной и вторичной обмотках, соответственно.
Отношение
,
показывающее, во сколько раз ЭДС во
вторичной обмотке трансформатора больше
(или меньше), чем в первичной, называется
коэффициентом
трансформации.
Если k > 1, то трансформатор – повышающий, если k < 1 – понижающий.
36. Энергия магнитного поля.
Проводник, по которому протекает электрический ток, всегда окружен магнитным полем. Магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электрическому, является носителем энергии. Энергия магнитного поля равна работе, которую затрачивает ток на создание этого поля.
Рассмотрим контур индуктивностью L, по которому течет ток I.
С данным контуром сцеплен магнитный поток Φ = LI.
При изменении тока на dI магнитный поток изменяется на dΦ = LdI.
Для такого изменения магнитного потока необходимо совершить работу dA = IdΦ = LIdI.
Тогда работа по созданию магнитного потока Φ будет равна
Энергия магнитного поля, связанного с контуром,
На примере однородного магнитного поля внутри длинного соленоида выразим энергию магнитного поля через величины, характеризующие это поле в окружающем пространстве.
Индуктивность
соленоида:
.
Отсюда:
.
Магнитная
индукция поля соленоида:
.
Отсюда:
.
По
определению вектора напряженности
магнитного поля
.
Используя эти соотношения
где Sl = V – объем соленоида.
Магнитное поле длинного соленоида однородно и сосредоточено внутри него, поэтому энергия заключена в объеме соленоида и распределена в нем с объемной плотностью
Эти соотношения носят общий характер и справедливы и для неоднородных полей, но только для сред, для которых связь между и линейная (т.е. для пара- и диамагнетиков).
Выражение
для объемной плотности энергии магнитного
поля аналогично соответствующему
выражению для объемной плотности энергии
электростатического поля:
,
с той разницей, что электрические
величины заменены в нем магнитными.
