- •Введение Предмет физики и ее связь с другими науками
- •1.1. Электростатическое поле в вакууме
- •1. Электрический заряд.
- •2. Закон Кулона.
- •3. Напряженность электростатического поля
- •4. Поток вектора .
- •5. Принцип суперпозиции электростатических полей.
- •6. Теорема Гаусса.
- •7. Циркуляция вектора напряженности.
- •8. Потенциальная энергия заряда.
- •9. Потенциал электростатического поля.
- •10. Разность потенциалов
- •11. Связь между напряженностью и потенциалом.
- •12. Эквипотенциальные поверхности.
- •13. Примеры расчета наиболее важных симметричных электростатических полей в вакууме.
- •13.1. Электростатическое поле электрического диполя в вакууме.
- •13.2. Поле равномерно заряженной бесконечной плоскости.
- •13.4. Поле равномерно заряженной сферической поверхности.
- •13.5. Поле объемно заряженного шара.
- •6. Поле равномерно заряженного бесконечного цилиндра (нити)
- •1.2. Электростатическое поле в веществе
- •14. Электростатическое поле в диэлектрической среде
- •15. Поляризованность.
- •16. Диэлектрическая проницаемость среды.
- •17. Электрическое смещение.
- •18. Условия на границе раздела двух диэлектрических сред
- •19. Сегнетоэлектрики.
- •20. Проводники в электростатическом поле.
- •21. Электроемкость.
- •22. Конденсаторы.
- •23. Соединения конденсаторов.
- •24. Энергия системы неподвижных точечных зарядов.
- •25. Энергия заряженного уединенного проводника.
- •26. Энергия заряженного конденсатора.
- •27. Энергия электростатического поля.
- •28. Пондеромоторные силы.
- •1.3. Постоянный электрический ток
- •29. Постоянный электрический ток, сила и плотность тока
- •30. Сторонние силы.
- •31. Электродвижущая сила и напряжение.
- •32. Закон Ома. Электрическое сопротивление.
- •33. Сопротивление соединения проводников:
- •34. Температурная зависимость сопротивления.
- •35. Работа и мощность тока.
- •36. Закон Джоуля–Ленца.
- •37. Закон Ома для неоднородного участка цепи.
- •38. Правила Кирхгофа для разветвленных цепей.
- •Электрические токи в металлах, вакууме и газах.
- •39. Электрические токи в металлах.
- •40. Основные законы электрического тока в классической теории электропроводности металлов.
- •41. Эмиссионные явления.
- •42. Газовые разряды.
- •1.4. Магнитное поле в вакууме
- •2. Рамка с током. Направление магнитного поля.
- •3. Вектор магнитной индукции.
- •4. Макротоки и микротоки.
- •6. Подобие векторных характеристик электростатического и магнитного полей.
- •7. Закон Био–Савара–Лапласа.
- •8. Магнитное поле прямого тока.
- •9. Магнитное поле в центре кругового тока.
- •10. Закон Ампера.
- •11. Взаимодействие параллельных токов.
- •12. Магнитная постоянная.
- •13. Единицы магнитной индукции и напряженности магнитного поля.
- •14. Магнитное поле свободно движущегося заряда.
- •15. Сила Лоренца.
- •16. Движение заряженных частиц в магнитном поле.
- •18. Теорема о циркуляции вектора .
- •19. Магнитное поле соленоида.
- •20. Магнитное поле тороида в вакууме.
- •21. Поток вектора магнитной индукции.
- •22. Теорема Гаусса для магнитного поля в вакууме
- •23. Потокосцепление.
- •24. Работа по перемещению проводника с током в магнитном поле.
- •25. Работа по перемещению контура с током в магнитном поле.
- •1.5. Магнитное поле в веществе
- •37. Магнитные моменты электронов и атомов.
- •39. Намагниченность. Магнитное поле в веществе.
- •40. Закон полного тока для магнитного поля в веществе.
- •41. Условия на границе раздела двух магнетиков.
- •42. Ферромагнетики и их свойства.
- •1.6. Явление электромагнитной индукции
- •26. Опыты Фарадея.
- •27. Закон Фарадея.
- •28. Эдс индукции в неподвижных проводниках.
- •29. Вращение рамки в магнитном поле.
- •30. Вихревые токи (токи Фуко).
- •31. Индуктивность контура.
- •32. Самоиндукция.
- •33. Токи при размыкании и замыкании цепи.
- •34. Взаимная индукция.
- •35. Трансформаторы.
- •36. Энергия магнитного поля.
- •1.7. Электромагнитные колебания
- •Свободные гармонические колебания в колебательном контуре
- •Дифференциальное уравнение свободных затухающих электромагнитных колебаний в электрическом колебательном контуре и его решение.
- •Дифференциальное уравнение вынужденных колебаний электромагнитных и его решение
- •Амплитуда и фаза вынужденных электромагнитных колебаний. Резонанс.
- •1.8. Переменный электрический ток
- •Резонанс напряжений
- •Резонанс токов
- •Мощность, выделяемая в цепи переменного тока
- •1.9. Уравнения максвелла. Электромагнитные волны
- •43. Вихревое электрическое поле.
- •44. Ток смещения.
- •45. Полная система уравнений Максвелла.
- •47. Электромагнитные волны.
- •48. Поперечность электромагнитных волн.
- •50. Энергия электромагнитных волн.
31. Индуктивность контура.
Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био-Савара-Лапласа пропорциональна току. Поэтому сцепленный с контуром магнитный поток пропорционален току в контуре:
Φ = LI,
где коэффициент пропорциональности L называется индуктивностью контура.
Пример: индуктивность длинного соленоида.
Потокосцепление
соленоида (полный магнитный поток сквозь
соленоид):
,
откуда:
,
где N − число витков соленоида, l − его длина, S − площадь, µ − магнитная проницаемость сердечника.
Индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится.
В этом смысле индуктивность контура – аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды.
32. Самоиндукция.
При изменении силы тока в контуре будет изменяться и сцепленный с ним магнитный поток, а это, в свою очередь будет индуцировать ЭДС в этом контуре. Возникновение ЭДС индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.
Единица индуктивности – генри ( Гн): 1Гн – индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1А равен 1Вб (1Гн=1Вб/А=1В·с/А).
Из
закона Фарадея ЭДС самоиндукции ԐS
Если контур не деформируется и магнитная проницаемость среды не изменяется, то L = const и ЭДС самоиндукции:
ԐS
,
где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.
Если ток со временем возрастает, то ԐS < 0, т.е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его возрастание.
Если ток со временем убывает, то ԐS > 0, т.е. ток самоиндукции имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание.
Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую "инертность".
33. Токи при размыкании и замыкании цепи.
При всяком изменении силы тока в проводящем контуре возникает ЭДС самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции.
Пусть в цепи сопротивлением R и индуктивностью L под действием внешней ЭДС Ԑ течет постоянный ток I0 = Ԑ / R. В момент времени t = 0 выключим источник тока. Возникает ЭДС самоиндукции ԐS , препятствующая уменьшению тока. Ток в цепи |
|
определяется
законом Ома IR
= ԐS,
или IR
.
Разделяем переменные:
,
и интегрируем по I
(от I0
до I)
и по t
(от 0 до t):
,
или
,
где
–
постоянная, называемая временем
релаксации
– время, в течение которого сила тока
уменьшается в е
раз.
Таким образом, при выключении источника тока сила тока убывает по экспоненциальному закону (а не мгновенно).
Оценим значение ЭДС самоиндукции при мгновенном увеличении сопротивления от R0 до R:
,
откуда ԐS
Т.е. при резком размыкании контура (R>> R0) ЭДС самоиндукции ԐS может во много раз превысить Ԑ, что может привести к пробою изоляции и выводу из строя измерительных приборов.
При
замыкании
цепи помимо внешней ЭДС Ԑ
возникает ЭДС самоиндукции ԐS
,
препятствующая возрастанию тока. По
закону Ома IR
= Ԑ
+ ԐS,
или IR = Ԑ
.
Можно показать, что решение этого
уравнения имеет вид:
,
где I0 = Ԑ / R – установившийся ток (при t →∞).
Таким образом, при включении источника тока сила тока возрастает по экспоненциальному закону (а не мгновенно).
