- •Введение Предмет физики и ее связь с другими науками
- •1.1. Электростатическое поле в вакууме
- •1. Электрический заряд.
- •2. Закон Кулона.
- •3. Напряженность электростатического поля
- •4. Поток вектора .
- •5. Принцип суперпозиции электростатических полей.
- •6. Теорема Гаусса.
- •7. Циркуляция вектора напряженности.
- •8. Потенциальная энергия заряда.
- •9. Потенциал электростатического поля.
- •10. Разность потенциалов
- •11. Связь между напряженностью и потенциалом.
- •12. Эквипотенциальные поверхности.
- •13. Примеры расчета наиболее важных симметричных электростатических полей в вакууме.
- •13.1. Электростатическое поле электрического диполя в вакууме.
- •13.2. Поле равномерно заряженной бесконечной плоскости.
- •13.4. Поле равномерно заряженной сферической поверхности.
- •13.5. Поле объемно заряженного шара.
- •6. Поле равномерно заряженного бесконечного цилиндра (нити)
- •1.2. Электростатическое поле в веществе
- •14. Электростатическое поле в диэлектрической среде
- •15. Поляризованность.
- •16. Диэлектрическая проницаемость среды.
- •17. Электрическое смещение.
- •18. Условия на границе раздела двух диэлектрических сред
- •19. Сегнетоэлектрики.
- •20. Проводники в электростатическом поле.
- •21. Электроемкость.
- •22. Конденсаторы.
- •23. Соединения конденсаторов.
- •24. Энергия системы неподвижных точечных зарядов.
- •25. Энергия заряженного уединенного проводника.
- •26. Энергия заряженного конденсатора.
- •27. Энергия электростатического поля.
- •28. Пондеромоторные силы.
- •1.3. Постоянный электрический ток
- •29. Постоянный электрический ток, сила и плотность тока
- •30. Сторонние силы.
- •31. Электродвижущая сила и напряжение.
- •32. Закон Ома. Электрическое сопротивление.
- •33. Сопротивление соединения проводников:
- •34. Температурная зависимость сопротивления.
- •35. Работа и мощность тока.
- •36. Закон Джоуля–Ленца.
- •37. Закон Ома для неоднородного участка цепи.
- •38. Правила Кирхгофа для разветвленных цепей.
- •Электрические токи в металлах, вакууме и газах.
- •39. Электрические токи в металлах.
- •40. Основные законы электрического тока в классической теории электропроводности металлов.
- •41. Эмиссионные явления.
- •42. Газовые разряды.
- •1.4. Магнитное поле в вакууме
- •2. Рамка с током. Направление магнитного поля.
- •3. Вектор магнитной индукции.
- •4. Макротоки и микротоки.
- •6. Подобие векторных характеристик электростатического и магнитного полей.
- •7. Закон Био–Савара–Лапласа.
- •8. Магнитное поле прямого тока.
- •9. Магнитное поле в центре кругового тока.
- •10. Закон Ампера.
- •11. Взаимодействие параллельных токов.
- •12. Магнитная постоянная.
- •13. Единицы магнитной индукции и напряженности магнитного поля.
- •14. Магнитное поле свободно движущегося заряда.
- •15. Сила Лоренца.
- •16. Движение заряженных частиц в магнитном поле.
- •18. Теорема о циркуляции вектора .
- •19. Магнитное поле соленоида.
- •20. Магнитное поле тороида в вакууме.
- •21. Поток вектора магнитной индукции.
- •22. Теорема Гаусса для магнитного поля в вакууме
- •23. Потокосцепление.
- •24. Работа по перемещению проводника с током в магнитном поле.
- •25. Работа по перемещению контура с током в магнитном поле.
- •1.5. Магнитное поле в веществе
- •37. Магнитные моменты электронов и атомов.
- •39. Намагниченность. Магнитное поле в веществе.
- •40. Закон полного тока для магнитного поля в веществе.
- •41. Условия на границе раздела двух магнетиков.
- •42. Ферромагнетики и их свойства.
- •1.6. Явление электромагнитной индукции
- •26. Опыты Фарадея.
- •27. Закон Фарадея.
- •28. Эдс индукции в неподвижных проводниках.
- •29. Вращение рамки в магнитном поле.
- •30. Вихревые токи (токи Фуко).
- •31. Индуктивность контура.
- •32. Самоиндукция.
- •33. Токи при размыкании и замыкании цепи.
- •34. Взаимная индукция.
- •35. Трансформаторы.
- •36. Энергия магнитного поля.
- •1.7. Электромагнитные колебания
- •Свободные гармонические колебания в колебательном контуре
- •Дифференциальное уравнение свободных затухающих электромагнитных колебаний в электрическом колебательном контуре и его решение.
- •Дифференциальное уравнение вынужденных колебаний электромагнитных и его решение
- •Амплитуда и фаза вынужденных электромагнитных колебаний. Резонанс.
- •1.8. Переменный электрический ток
- •Резонанс напряжений
- •Резонанс токов
- •Мощность, выделяемая в цепи переменного тока
- •1.9. Уравнения максвелла. Электромагнитные волны
- •43. Вихревое электрическое поле.
- •44. Ток смещения.
- •45. Полная система уравнений Максвелла.
- •47. Электромагнитные волны.
- •48. Поперечность электромагнитных волн.
- •50. Энергия электромагнитных волн.
4. Макротоки и микротоки.
В дальнейшем мы будем различать макроскопические токи, т.е. электрические токи, протекающие по проводникам в электрических цепях и микроскопические токи, обусловленных движением электронов в атомах и молекулах. Намагниченность постоянных магнитов является следствием существованием в них микротоков.
Внешнее магнитное поле оказывает ориентирующее, упорядочивающее действие на эти микротоки. Например, если вблизи какого-то тела поместить проводник с током (макроток), то под действием его магнитного поля микротоки во всех атомах определенным образом ориентируются, создавая в теле дополнительное магнитное поле.
Вектор магнитной индукции характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками.
Поэтому, при одном и том же макротоке, вектор в различных средах будет иметь разные значения.
Магнитное
поле макротока описывается вектором
напряженности магнитного поля
.
В среде магнитное поле макротоков усиливается за счет поля микротоков среды. 5. Связь между и .
Для однородной изотропной среды вектор магнитной индукции:
,
где µ0 – магнитная постоянная, µ – магнитная проницаемость среды, безразмерная величина, показывающая, во сколько раз магнитное поле макротоков усиливается за счет поля микротоков среды.
6. Подобие векторных характеристик электростатического и магнитного полей.
Вектор магнитной индукции – аналог вектора напряженности электростатического поля . Эти величины определяют силовые действия этих полей и зависят от свойств среды. Аналогом вектора электрического смещения является вектор напряженности магнитного поля.
Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций полей, создаваемых каждым током или движущимся зарядом.
7. Закон Био–Савара–Лапласа.
Элемент проводника с током I создает в некоторой точке A индукцию поля:
где
– радиус-вектор, проведенный из
элемента
проводника в точку A.
Направление
|
|
где α – угол между векторами и
8. Магнитное поле прямого тока.
Ток
течет по прямому проводу бесконечной
длины. В качестве постоянной
интегрирования выберем угол α. Из
рисунка
Следовательно
|
|
Угол α для всех элементов прямого провода изменяется от 0 до π.
,
По принципу суперпозиции:
Если ток течет по отрезку провода, то:
Эта формула переходит в формулу для бесконечного длинного проводника при α1=0 , α2= π . |
|
9. Магнитное поле в центре кругового тока.
В данном случае сложение векторов можно заменить сложением их модулей, учитывая sinα=1, r = R
|
|
откуда
Можно показать,
что на расстоянии r от центра витка
вдоль оси витка магнитное поле будет:
Напряженность магнитного поля, создаваемого круговым током, на большом расстоянии от витка с током (r >> R)
|
|
где
– магнитный момент витка с током.
Сравним эту формулу с формулой для электрического поля диполя (с электрическим дипольным моментом pe) на оси диполя:
.
Очевидное подобие этих формул объясняет, почему часто говорят, что контур с током подобен "магнитному диполю", имеющему равный с контуром магнитный момент.
