- •Введение Предмет физики и ее связь с другими науками
- •1.1. Электростатическое поле в вакууме
- •1. Электрический заряд.
- •2. Закон Кулона.
- •3. Напряженность электростатического поля
- •4. Поток вектора .
- •5. Принцип суперпозиции электростатических полей.
- •6. Теорема Гаусса.
- •7. Циркуляция вектора напряженности.
- •8. Потенциальная энергия заряда.
- •9. Потенциал электростатического поля.
- •10. Разность потенциалов
- •11. Связь между напряженностью и потенциалом.
- •12. Эквипотенциальные поверхности.
- •13. Примеры расчета наиболее важных симметричных электростатических полей в вакууме.
- •13.1. Электростатическое поле электрического диполя в вакууме.
- •13.2. Поле равномерно заряженной бесконечной плоскости.
- •13.4. Поле равномерно заряженной сферической поверхности.
- •13.5. Поле объемно заряженного шара.
- •6. Поле равномерно заряженного бесконечного цилиндра (нити)
- •1.2. Электростатическое поле в веществе
- •14. Электростатическое поле в диэлектрической среде
- •15. Поляризованность.
- •16. Диэлектрическая проницаемость среды.
- •17. Электрическое смещение.
- •18. Условия на границе раздела двух диэлектрических сред
- •19. Сегнетоэлектрики.
- •20. Проводники в электростатическом поле.
- •21. Электроемкость.
- •22. Конденсаторы.
- •23. Соединения конденсаторов.
- •24. Энергия системы неподвижных точечных зарядов.
- •25. Энергия заряженного уединенного проводника.
- •26. Энергия заряженного конденсатора.
- •27. Энергия электростатического поля.
- •28. Пондеромоторные силы.
- •1.3. Постоянный электрический ток
- •29. Постоянный электрический ток, сила и плотность тока
- •30. Сторонние силы.
- •31. Электродвижущая сила и напряжение.
- •32. Закон Ома. Электрическое сопротивление.
- •33. Сопротивление соединения проводников:
- •34. Температурная зависимость сопротивления.
- •35. Работа и мощность тока.
- •36. Закон Джоуля–Ленца.
- •37. Закон Ома для неоднородного участка цепи.
- •38. Правила Кирхгофа для разветвленных цепей.
- •Электрические токи в металлах, вакууме и газах.
- •39. Электрические токи в металлах.
- •40. Основные законы электрического тока в классической теории электропроводности металлов.
- •41. Эмиссионные явления.
- •42. Газовые разряды.
- •1.4. Магнитное поле в вакууме
- •2. Рамка с током. Направление магнитного поля.
- •3. Вектор магнитной индукции.
- •4. Макротоки и микротоки.
- •6. Подобие векторных характеристик электростатического и магнитного полей.
- •7. Закон Био–Савара–Лапласа.
- •8. Магнитное поле прямого тока.
- •9. Магнитное поле в центре кругового тока.
- •10. Закон Ампера.
- •11. Взаимодействие параллельных токов.
- •12. Магнитная постоянная.
- •13. Единицы магнитной индукции и напряженности магнитного поля.
- •14. Магнитное поле свободно движущегося заряда.
- •15. Сила Лоренца.
- •16. Движение заряженных частиц в магнитном поле.
- •18. Теорема о циркуляции вектора .
- •19. Магнитное поле соленоида.
- •20. Магнитное поле тороида в вакууме.
- •21. Поток вектора магнитной индукции.
- •22. Теорема Гаусса для магнитного поля в вакууме
- •23. Потокосцепление.
- •24. Работа по перемещению проводника с током в магнитном поле.
- •25. Работа по перемещению контура с током в магнитном поле.
- •1.5. Магнитное поле в веществе
- •37. Магнитные моменты электронов и атомов.
- •39. Намагниченность. Магнитное поле в веществе.
- •40. Закон полного тока для магнитного поля в веществе.
- •41. Условия на границе раздела двух магнетиков.
- •42. Ферромагнетики и их свойства.
- •1.6. Явление электромагнитной индукции
- •26. Опыты Фарадея.
- •27. Закон Фарадея.
- •28. Эдс индукции в неподвижных проводниках.
- •29. Вращение рамки в магнитном поле.
- •30. Вихревые токи (токи Фуко).
- •31. Индуктивность контура.
- •32. Самоиндукция.
- •33. Токи при размыкании и замыкании цепи.
- •34. Взаимная индукция.
- •35. Трансформаторы.
- •36. Энергия магнитного поля.
- •1.7. Электромагнитные колебания
- •Свободные гармонические колебания в колебательном контуре
- •Дифференциальное уравнение свободных затухающих электромагнитных колебаний в электрическом колебательном контуре и его решение.
- •Дифференциальное уравнение вынужденных колебаний электромагнитных и его решение
- •Амплитуда и фаза вынужденных электромагнитных колебаний. Резонанс.
- •1.8. Переменный электрический ток
- •Резонанс напряжений
- •Резонанс токов
- •Мощность, выделяемая в цепи переменного тока
- •1.9. Уравнения максвелла. Электромагнитные волны
- •43. Вихревое электрическое поле.
- •44. Ток смещения.
- •45. Полная система уравнений Максвелла.
- •47. Электромагнитные волны.
- •48. Поперечность электромагнитных волн.
- •50. Энергия электромагнитных волн.
Электрические токи в металлах, вакууме и газах.
39. Электрические токи в металлах.
Носителями электрического тока в металле являются свободные электроны. При образовании кристаллической решетки электроны внешних оболочек атомов (валентные электроны) обобществляются и кристалл представляет собой решетку неподвижных ионов металла, м/у которыми хаотически движутся свободные электроны, образуя электронный газ, обладающий свойствами идеального газа.
Согласно теории Друде–Лоренца, электроны обладают той же энергией теплового движения, что и молекулы одноатомного газа. Средняя скорость теплового движения электронов
где k =1,38·10 –23 Дж/К – постоянная Больцмана, me = 9,11⋅10 –31 кг – масса электрона, T – абсолютная (или термодинамическая) температура (в Кельвинах).
При комнатной температуре (T =300 К) средняя скорость теплового движения электронов равна u =1,1·105 м/с. Хаотическое тепловое движение электронов не может привести к возникновению тока.
При наложении внешнего электрического поля на металлический проводник в дополнение к хаотическому тепловому движению возникает упорядоченное движение электронов (электрический ток).
Даже при предельно
допустимых значениях плотности тока,
средняя скорость
упорядоченного
движения электронов, обуславливающего
электрический ток, значительно меньше
их скорости теплового движения
:
.
40. Основные законы электрического тока в классической теории электропроводности металлов.
Закон Ома.
Пусть в металлическом проводнике
действует поле E
= const.
Под действием силы F
= eE
заряд e
движется равноускоренно с ускорением
a = eE /m
и к концу свободного пробега приобретает
скорость
.
Среднее время
свободного пробега электронов
определяется
средней длиной свободного пробега
и средней скоростью движения электронов
относительно кристаллической решетки
.
Средняя скорость
направленного движения электронов:
Плотность тока,
,
где
–
удельная проводимость металла.
Закон Джоуля-Ленца.
К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию
,
которая при соударении электрона с ионом полностью передается решетке.
Если n
− концентрация
электронов, то в единицу времени в
единице объема происходит
столкновений
и решетке передается энергия:
Закон Видемана–Франца.
Отношение теплопроводности λ к удельной проводимости γ для всех металлов при одной и той же температуре одинаково и увеличивается пропорционально температуре
,
где
Трудности классической теории.
1. Температурная
зависимость сопротивления:
~
,
R~
,
следовательно, R~
, что противоречит опытным данным,
согласно которым R~
T.
2. Оценка среднего
пробега электронов. Чтобы получить
величины удельной проводимости γ,
совпадающие с опытными данными, следует
принимать
в сотни раз больше межатомных расстояний
в кристалле.
3. Теплоемкость металла складывается из теплоемкости кристаллической решетки и теплоемкости электронного газа. Поэтому удельная (рассчитанная на один моль) теплоемкость металла должна быть существенно выше теплоемкости диэлектриков, у которых нет свободных электронов, что противоречит эксперименту.
Все эти трудности снимаются квантовой теорией.
