- •Содержание
- •Введение
- •1. Управляющий комплекс танкера
- •1.1 Группы комплексной автоматизации судов
- •1.2 Комплексная автоматизация управления вспомогательными механизмами энергетических установок и судовых систем
- •1.3 Структура управляющего комплекса
- •1.4 Конструктивное построение управляющего комплекса
- •2. Описание систем нефтеналивного танкера "победа"
- •2.1 Общие сведения
- •2.2 Общее расположение и архитектура судна
- •2.3 Техническое описание системы кондиционирования воздуха
- •2.4 Противопожарная система
- •2.5 Осушительно-балластная система
- •3. Анализ подсистем судна
- •3.1 Подсистема пожаротушения
- •3.1.1 Водяное пожаротушение
- •3.1.2 Спринклерная система пожаротушения
- •3.1.3 Система орошения палубы водой
- •3.1.4 Система инертных газов
- •3.1.5 Система пенотушения
- •3.2 Подсистема кондиционирования воздуха
- •3.3 Осушительно-балластная подсистема
- •4. Алгоритмическая структура контроля и управления
- •4.1 Алгоритм первичной обработки сигналов с датчиков и выработки экстренных сообщений
- •4.2 Алгоритм проверки на достоверность
- •4.3 Алгоритмы фильтрации
- •4.4 Алгоритм проверки на технологические границы
- •5. Техническая структура системы
- •5.1 Выбор датчиков
- •5.2 Выбор исполнительных механизмов
- •5.3 Расчет разрядности ацп и мк
- •5.4 Схема соединения устройств автоматизации
- •5.4.1 Общие характеристики модулей серии adam-4000
- •5.4.2 Ibm pc-совместимый контроллер связи adam-4500
- •5.4.3 Модули аналогового ввода серии adam-4000
- •5.4.4 Восьмиканальный модуль аналогового ввода adam-4017
- •5.4.5 Модули аналогового вывода серии adam-4000 Модуль аналогового вывода adam-4021
- •Модуль adam-4561 - преобразователь интерфейса rs-232/422/485 в usb
- •5.5 Конструктивное исполнение разработки
- •6. Техническая реализация системы контроля
- •6.1 Реализация диспетчерского уровня системы
- •7. Технико-экономическое обоснование проекта
- •7.1 Обоснование необходимости и актуальности работы
- •7.2 Обоснование выбора аналога для сравнения
- •7.3 Обоснование критериев сравнения разрабатываемого устройства с аналогом
- •7.4 Расчет затрат на этапе проектирования
- •7.5 Расчет трудоемкости разработки программного продукта
- •7.6 Стоимостная оценка разработки
- •7.7 Расчет экономического эффекта
- •7.8 Сравнительная технико-экономическая эффективность разработки
- •8. Безопасность и экологичность проекта
- •8.1 Оценка напряженности работы оператора пэвм
- •8.2 Санитарно-гигиенические требования к условиям труда операторов
- •8.3 Оценка возможности возникновения чрезвычайной ситуации
- •8.4 Экологичность проекта
- •9. Социальная значимость работы
- •Заключение
- •Список использованной литературы
- •Приложения Приложение 1
- •Приложение 2
- •Приложение 3
- •Приложение 4
1.2 Комплексная автоматизация управления вспомогательными механизмами энергетических установок и судовых систем
Назначение и особенности вспомогательных механизмов энергетических установок и судовых систем. Вспомогательные механизмы предназначены обслуживать энергетические установки и общие нужды судна. Вспомогательные механизмы энергетических установок обеспечивают охлаждение машин, смазку, подачу топлива и воздуха в машинное и котельное отделения. Общие нужды судна обслуживаются системами для удаления и принятия водяного балласта, удаления трюмной воды, тушения пожара, снабжения пассажиров и команд питьевой и мытьевой водой, вентиляции судовых помещений и т. п. Системы управления этими объектами включают большое число запорных клапанов и АЭП.
Судовыми системами принято называть совокупность вспомогательных механизмов: напорных средств, трубопроводов, арматуры и приводов управления, предназначенных для перемещения жидкостей и газов, поддержания заданного давления и температуры, необходимых для обеспечения всех нужд судна.
Для работы вспомогательных механизмов энергетических установок и судовых систем, а также органов управления ими характерно то, что они должны находиться в одном из двух устойчивых состояний (включено — выключено, открыто — закрыто), определяемых режимом работы установок. Управление механизмами осуществляется в соответствии с алгоритмом, определяющим заданную последовательность выполнения операций.
При нулевом уровне автоматизации управления включение и выключение механизмов в заданной последовательности осуществлялось вручную и не обеспечивало требуемого качества и надежности управления, особенно в аварийных ситуациях. При этом требовалось значительное время для выполнения операций и наличие большого количества обслуживающего персонала, ввиду территориальной рассредоточенности установок. Поэтому возникла необходимость в автоматизации процессов управления отдельными механизмами и устройствами — первый уровень автоматизации управления. В дальнейшем перешли к автоматизации отдельных локальных систем (система управления энергетической установкой, САУ электроэнергетической системой и др.) — второй уровень автоматизации.
Необходимость централизации управления совокупностью локальных систем из ЦПУ, а также необходимость повышения эффективности эксплуатации судов, ликвидации вахт и дежурств потребовали создания управляющего комплекса вспомогательными механизмами энергетических установок и судовых систем — третий уровень автоматизации.
Вопросы проектирования управляющего комплекса. При проектировании управляющего комплекса выполняются: 1) формализация алгоритмов управления отдельного ОУ и алгоритмов централизованного контроля и управления совокупностью объектов управления; 2) разработка функциональных схем, реализующих заданные алгоритмы и отвечающих принятым критериям; 3) определение типа и мощности двигателей к ОУ, выбор элементной базы; 4) преобразование функциональных схем в принципиальные, отражающие размещение и компоновку элементов систем и комплекса, а также реализация принципиальных схем на типовых элементах.
Одним из наиболее ответственных этапов, является этап формализации алгоритма управления и контроля. В качестве примера рассмотрим алгоритмы управления вспомогательными механизмами транспортного судна, обеспечивающие автоматический, пуск и остановку дизель-генераторной установки, а также главного двигателя. Процесс введения в действие главной энергетической установки судна, как правило, начинается с запуска дизель-генератора, а затем главного двигателя. При этом должен выдерживаться определенный порядок включения механизмов и устройств с соблюдением ряда условий. Кроме того, должна быть предусмотрена возможность введения в действие резервного агрегата или установки. Так как запуск силовой установки производится без участия оператора, то необходимо составить подробные алгоритмы управления.
