- •Содержание
- •Введение
- •1. Управляющий комплекс танкера
- •1.1 Группы комплексной автоматизации судов
- •1.2 Комплексная автоматизация управления вспомогательными механизмами энергетических установок и судовых систем
- •1.3 Структура управляющего комплекса
- •1.4 Конструктивное построение управляющего комплекса
- •2. Описание систем нефтеналивного танкера "победа"
- •2.1 Общие сведения
- •2.2 Общее расположение и архитектура судна
- •2.3 Техническое описание системы кондиционирования воздуха
- •2.4 Противопожарная система
- •2.5 Осушительно-балластная система
- •3. Анализ подсистем судна
- •3.1 Подсистема пожаротушения
- •3.1.1 Водяное пожаротушение
- •3.1.2 Спринклерная система пожаротушения
- •3.1.3 Система орошения палубы водой
- •3.1.4 Система инертных газов
- •3.1.5 Система пенотушения
- •3.2 Подсистема кондиционирования воздуха
- •3.3 Осушительно-балластная подсистема
- •4. Алгоритмическая структура контроля и управления
- •4.1 Алгоритм первичной обработки сигналов с датчиков и выработки экстренных сообщений
- •4.2 Алгоритм проверки на достоверность
- •4.3 Алгоритмы фильтрации
- •4.4 Алгоритм проверки на технологические границы
- •5. Техническая структура системы
- •5.1 Выбор датчиков
- •5.2 Выбор исполнительных механизмов
- •5.3 Расчет разрядности ацп и мк
- •5.4 Схема соединения устройств автоматизации
- •5.4.1 Общие характеристики модулей серии adam-4000
- •5.4.2 Ibm pc-совместимый контроллер связи adam-4500
- •5.4.3 Модули аналогового ввода серии adam-4000
- •5.4.4 Восьмиканальный модуль аналогового ввода adam-4017
- •5.4.5 Модули аналогового вывода серии adam-4000 Модуль аналогового вывода adam-4021
- •Модуль adam-4561 - преобразователь интерфейса rs-232/422/485 в usb
- •5.5 Конструктивное исполнение разработки
- •6. Техническая реализация системы контроля
- •6.1 Реализация диспетчерского уровня системы
- •7. Технико-экономическое обоснование проекта
- •7.1 Обоснование необходимости и актуальности работы
- •7.2 Обоснование выбора аналога для сравнения
- •7.3 Обоснование критериев сравнения разрабатываемого устройства с аналогом
- •7.4 Расчет затрат на этапе проектирования
- •7.5 Расчет трудоемкости разработки программного продукта
- •7.6 Стоимостная оценка разработки
- •7.7 Расчет экономического эффекта
- •7.8 Сравнительная технико-экономическая эффективность разработки
- •8. Безопасность и экологичность проекта
- •8.1 Оценка напряженности работы оператора пэвм
- •8.2 Санитарно-гигиенические требования к условиям труда операторов
- •8.3 Оценка возможности возникновения чрезвычайной ситуации
- •8.4 Экологичность проекта
- •9. Социальная значимость работы
- •Заключение
- •Список использованной литературы
- •Приложения Приложение 1
- •Приложение 2
- •Приложение 3
- •Приложение 4
5.4.2 Ibm pc-совместимый контроллер связи adam-4500
Устройство ADAM-4500 является функционально законченным автономным контроллером связи, предназначенным для реализации распределенных систем сбора данных и управления. Контроллер ADAM-4500 содержит встроенную операционную систему ROM-DOS, совместимую с MS-DOS, за исключением поддержки стандартного сервиса системы BIOS. Применение данного контроллера предоставляет пользователю возможность создания программного обеспечения на языках высокого уровня с использованием персональных IBM PC совместимых ЭВМ.
Контроллер ADAM-4500 имеет в своем составе два коммуникационных порта (СОМ1 и COM2), которые обеспечивают возможность организации взаимодействия практически с любыми устройствами с последовательным доступом. Порт СОМ1 может быть настроен на функционирование в режиме интерфейсов RS-232 или RS-485 путем установки соответствующего переключателя. Порт COM2 работает в режиме RS-485. Данная конфигурация портов контроллера позволяет реализовывать различные приложения с интенсивным обменом по двум последовательным каналам связи.
Часы реального времени, входящие в состав контроллера, обеспечивают возможность получения точных меток времени при фиксации каких-либо событий в контролируемой прикладной области. Сторожевой таймер предназначен для осуществления повторного запуска системы в случае непредвиденной остановки исполнения программы.
Внешний вид контроллера связи ADAM-4500 показан на рисунке 5.4.
Рис. 5.4 IBM PC совместимый контроллер связи ADAM-4500
Основные технические характеристики контроллера:
• процессор: AMD 188Е8-40МГц;
• ОЗУ: 256 кб (234 кбайт памяти доступны для прикладных программ);
• Flash-диск: 256 кб (170 кбайт доступны для хранения прикладных программ);
• операционная система: Datalight ROM-DOS, совместимая с MS-DOS;
• встроенные часы реального времени;
• сторожевой таймер;
• последовательные порты: СОМ1 и COM2 (СОМ1 - RS-232/RS-485; COM2-RS-485);
• интерфейс RS-232:
• сигналы: TxD, RxD, RTS, CIS, DTR, DSR, DCD, RI, GND, о режим обмена: асинхронный полнодуплексный, "точка-точка",
• скорость обмена: до 115200 бит/с,
• максимальная протяженность линии связи: до 15,2м (по стандарту);
• интерфейс RS-485:
• сигналы: DATA+, DATA-, GND,
• режим обмена: асинхронный полудуплексный, многоточечный,
• скорость обмена: до 115200 бит/с,
• используемые линии порта RS-232 для загрузки программного обеспечения: TxD, RxD, GND;
• автоматическое определение направления потока данных в режиме RS-485;
• питание нестабилизированным постоянным напряжением: 10...30 В, защита от изменения полярности напряжения питания;
• рабочий диапазон температур -10°С...+70°С;
• габаритные размеры: 120 х60 мм;
• потребляемая мощность: 2 Вт;
• микромонитор реального времени TRACE MODE;
• до 128 точек ввода/вывода;
• до 32 программ.
Для организации ввода аналоговых сигналов с датчиков будем использовать модуль аналогового ввода серии ADAM-4000. Так как в разработанной системе шесть измеряемых величин, то необходимо шесть каналов ввода. Можно поставить 6 одноканальных устройств ввода, но с точки зрения экономической эффективности, а также экономии пространства и удобства обслуживания системы, для технической реализации выберем восьмиканальный модуль аналогового ввода ADAM-4017.
