Антиэмиссионные покрытия сеток
К сеткам генераторных ламп, как к электродам, во многом определяющим параметры и характеристики этих приборов, предъявляется ряд высоких требований, выполнение которых определяет качество выпускаемой продукции. Выбор материала сеток генераторных ламп определяется условиями их работы и особенностями конструкции прибора. Сетка представляет собой сложную решетчатую конструкцию с определенной степенью прозрачности. Для ее изготовления используется молибденовая или вольфрамовая проволока диаметром 0.1...0.5 мм или приготовленная на ее основе "плющенка". В процессе работы сеточные узлы, располагающиеся непосредственно в зоне электронного потока, должны обеспечивать высокое тепловое рассеивание, сохранять свои геометрические характеристики и обладать малым коэффициентом вторичной эмиссии.
Для большинства типов мощных генераторных приборов, установленная норма паразитной термоэлектронной эмиссии составляет 10-5 А/см2.
Уменьшение термоэлектронной эмиссии сеток может быть обеспечено максимальным снижением их температуры во время работы или достижением возможно большей работы выхода с их поверхности. Конструктивные решения, снижающие температуру сеток, такие как, например, увеличение их рабочей поверхности или увеличение расстояния между сеткой и катодом, как правило, не приемлемы, потому, что они приводят к снижению таких технических характеристик ламп, как крутизна, увеличению межэлектродных емкостей, габаритов и массы.
Наиболее эффективным в этом случае является использование, при изготовлении сеточных электродов - материалов и покрытий, обладающих высокими значениями интегрального коэффициента излучения и работы выхода, и представляющих, в ряде случаев, сложную систему многослойных структур, состоящую из сплавов или химических соединений. Данная проблема становится весьма актуальной при создании мощных генераторных ламп, использующих перенапряженные режимы работы и высокие удельные мощности рассеивания на сетках до 20 Вт/см2 и более с соответствующим повышением рабочей температуры сеток.
Известен способ изготовления антиэмиссионного покрытия на сеточных электродах из молибдена, включающий в себя: формирование катафорезом слоя карбида циркония толщиной порядка 10 мкм; припекание в вакууме при температуре 1500°С; нанесение катафорезом поверхностного слоя платины; припекание при температуре 1000...1300°С. В полученном таким способом композиционном покрытии антиэмиссионным слоем является платина, а карбид циркония выполняет роль диффузного барьера между платиной и керном сетки.
Также для уменьшения термоэлектронной эмиссии сеточный электрод покрывают металлом VIII-й группы периодической системы, и в частности, платиной. Для уменьшения диффузии платины в керн сетки и повышения излучающей способности, между основным металлом и платиной наносят промежуточный слой, состоящий из соединений Zr-Pt или - Ti-Pt.
Такой способ получения антиэмиссионного покрытия включает в себя следующие технологические операции: на сетку методом катафореза осаждается порошкообразное интерметаллическое соединение Zr-Pt или Ti-Pt толщиной 5...10 мкм, после чего оно в течение 20 минут припекается при температуре 1500...1600°С в атмосфере инертных газов или в вакууме; последующий трех микронный слой Pt формируется электролитическим путем, после чего сетку вновь отжигают в вакууме при температуре 1500...1600°С.
Сеточные электроды генераторных ламп, выполненные из молибдена, вольфрама, или тантала, имеют антиэмиссионное покрытие, включающем получение промежуточного слоя, образованного металлоидом и металлом, из которого выполнена сетка, и поверхностного слоя платины. Предпочтительная толщина промежуточного слоя с небольшой шероховатостью составляет 15% от диаметра металлической проволоки. Толщина поверхностного металлического слоя Pt достигает 30 мкм.
В статье [Вильдгрубе В.Г., Церпицкий Б.Д., Шаронов В.Н., Шаталов С.М. Сетки мощных генераторных ламп. Проблемы, пути развития. Электронная техника. Серия Электровакуумные и газоразрядные приборы. Вып.2 (125), 1989. С.43-52] показана возможность получения антиэмиссионного интерметаллического покрытия Pt3Zr. В данном технологическом процессе для нанесения покрытия карбида циркония используется плазменно-дуговой метод, осуществляемый плазмотроном с самоустанавливающейся длиной дуги в аргоне при давлении 10 кПа. Однако данный способ получения карбида циркония характеризуется наличием существенных недостатков:
- используемый в качестве исходного материала для формирования карбидного слоя порошок ZrC является взрыво- и пожароопасным веществом, что требует соблюдения очень строгих правил по технике безопасности, как при его хранении, так и при работе;
- формируемые покрытия ZrC обладают невысокой адгезией, что не обеспечивает необходимого сцепления многослойного покрытия с керном сетки и приводит к преждевременному его разрушению.
Как видно проблемой по улучшению антиэмиссионных свойств занимаются в тех странах, где производится разработка генераторных ламп, при этом все основные решения сводятся к использованию многослойных покрытий с оконечным использованием платины. Применение гладкого электролитического покрытия платины не обеспечивает высокой излучательной способности поверхности сеточного электрода, в результате чего, повышается его температура, а следовательно, растет скорость диффузии платины в материал основы. В случае применения шероховатых покрытий, особенно из порошка, в лампе возникают искрения, и снижается ее электрическая прочность.
Наиболее близким к заявляемому способу по совокупности признаков является способ получения антиэмиссионного покрытия на сеточных электродах мощных генераторных ламп, представленный в статье [Лисенков А.А., Радциг Н.М. Современные материалы для сеточных узлов мощных генераторных ламп. Петербургский журнал электроники. 2000, №2 (23). С.18-23].
В этом способе для нанесения покрытия карбида циркония используют вакуумно-дуговые источники плазмы. Данный тип испарителей позволяет интенсифицировать процесс нанесения покрытий, обеспечить высокую их чистоту и хорошую адгезию. Их особенностью является возможность получения не только чистых материалов, но и осуществление плазмохимического синтеза соединений, для чего в генерируемый плазменный поток вводится реакционноспособный газ.
На сформированный слой карбида циркония гальваническим способом осаждается слой платины. После термической обработки на сетке формируется интерметаллическое покрытие Pt3Zr, которое в интервале температур от 1000 до 1700°С химически связывает торий.
Анализ покрытий, исследованных после их эксплуатации в работающем приборе, показывал на дифрактограммах, наряду с интерметаллическим покрытием Pt3Zr, наличие компонент чистых металлов: платины, циркония, молибдена или вольфрама, что говорит о протекающем процессе разложения.
Наличие свободных металлов при высоких температурах приводит к интенсивной их диффузии, что значительно снижает эксплуатационные качества антиэмиссионного покрытия.
