
- •1. Анализ методов и моделей прогнозирования
- •1.1 Виды и классификация методов прогнозирования
- •1.1.1 Планирование на предприятии
- •1.1.2 Классификация методов прогнозирования по степени формализации
- •1.1.3 Классификация методов прогнозирования по источникам получения информации
- •1.1.4 Классификация методов прогнозирования финансового состояния предприятия
- •1.1.5 Классификация методов прогнозирования в системах маркетинга
- •1.2 Примеры постановок задач
- •1.3 Применение методов прогнозирования в автоматизированных системах
- •1.3.1 Система управления парус
- •1.3.2 Методы прогнозирования временных рядов, реализованные в программе ForExSal
- •1.3.3 Корпоративная система «Галактика»
- •1.4 Методы прогнозирования, применяемые для моделей с сезонной компонентой
- •1.4.1 Введение
- •1.4.2 Элементы временного ряда
- •1.4.3.1 Расчет сезонной компоненты в аддитивных моделях
- •1.4.3.2 Десезонализация данных при расчете тренда
- •1.4.3.3 Расчет ошибок
- •1.4.3.4 Прогнозирование по аддитивной модели
- •1.4.4 Анализ модели с мультипликативной компонентой
- •1.4.4.1 Расчет значений сезонной компоненты
- •1.4.4.2 Десезонализация данных и расчет уравнения тренда
- •1.4.4.4 Прогнозирование по модели с мультипликативной компонентой
- •2. Примеры применения методов технико-экономического планирования и прогнозирования для моделей с сезонной компонентой
- •2.1 Пример №1
- •2.1.1 Анализ значений квартальных объемов выпуска на основе модели с аддитивной компонентой
- •2.1.2 Нахождение прогноза объема выпуска на последний квартал третьего года
- •2.2 Пример №2
- •2.1.1 Анализ значений квартальных объемов выпуска на основе модели с аддитивной компонентой
- •2.1.2 Нахождение прогноза объема выпуска на последний квартал третьего года и первый квартал четвертого года
- •3. Программная реализация методов скользящего среднего и линейной регрессии для решения задач прогнозирования с сезонной компонентой
- •3.1 Описание программы прогнозирования спроса
- •3.2 Решение задач с использованием программы
1.3 Применение методов прогнозирования в автоматизированных системах
С развитием промышленности сегодня вновь возрождается интерес к экономическому планированию, прогнозированию себестоимости продукции, анализу затрат производства.
Нынешний этап характеризуется массовым переходом предприятий к внедрению современных корпоративных информационных систем и более высоким уровнем требований к программным средствам автоматизации планово-экономических расчетов. Наиболее существенным требованием является интеграция подсистемы технико-экономического планирования с сопряженными подсистемами технической подготовки производства, производственного планирования, логистики и учета фактических затрат.
Другое важное требование – отказ от жестких, раз и навсегда привязанных к конкретному производству алгоритмов плановых расчетов. Система должна подстраиваться под особенности производственных процессов и учетной политики, поскольку предприятие может перейти от серийного производства к производству по заказам, открыть новые производства или перепрофилировать существующие.
В настоящее время распространение получили самые различные программные средства, обеспечивающие в той или иной мере сбор и аналитическую обработку информации. Одни из них, например MS Excel, оснащены встроенными статистическими функциями и средствами программирования. Другие же, особенно недорогие программы бухгалтерского и управленческого учета, такими возможностями не обладают или аналитические возможности реализованы в них недостаточно, а иногда и некорректно. Впрочем, это присуще, к сожалению, и некоторым более мощным и многофункциональным системам управления предприятием. Такое положение объясняется, по всей видимости, неглубоким анализом со стороны разработчиков свойств выбранных ими алгоритмов прогнозирования и их некритическим применением. Например, судя по доступным источникам, часто в основе прогнозирующих алгоритмов используется экспоненциальное сглаживание нулевого порядка. Однако данный подход правомочен только при отсутствии тенденции изучаемого процесса. На самом же деле экономические процессы являются нестационарными, и прогнозирование подразумевает использование более сложных моделей, чем модели с постоянным трендом.
Интересно в ракурсе рассматриваемой темы проследить путь развития отечественных автоматизированных банковских систем. Первые банковские системы основывались на жесткой технологии, постоянно требуя внесения изменений или дополнительного программного обеспечения. Это побудило разработчиков финансового программного обеспечения, следуя принципам открытости, масштабируемости и гибкости, использовать промышленные СУБД. Однако сами по себе эти СУБД оказались непригодны к решению аналитических задач высокого уровня, к которым относится проблема прогнозирования. Для этого пришлось использовать дополнительно технологии хранилищ данных и оперативной аналитической обработки, обеспечивших работу систем поддержки принятия решений финансово-кредитных учреждений и составления прогнозов. Такой же подход используется и в комплексных системах управления предприятиями.
Другим направлением современного прикладного использования методов прогнозирования на основе ИТ является решение широкого круга маркетинговых задач. Иллюстрацией может служить программное обеспечение SAS Churn Management Solution for Telecommunications. Оно предназначено для телекоммуникационных операторов и позволяет, как утверждается его разработчиками, строить прогностические модели и с их помощью оценивать вероятность оттока отдельных категорий клиентов. Основу этого программного обеспечения составляет сервер распределенной базы данных Scalable Performance Data Server, средства для построения и администрирования хранилищ и витрин данных, инструментарий интеллектуального анализа данных Enterprise Miner, система поддержки принятия решений SAS/MDDB Server, а также вспомогательные средства. Для обеспечения конкурентоспособности новомодных CRM-систем в список их расширенных возможностей, так же как и для автоматизированных банковских систем, включены функции отчетности, использующие технологии OLAP и позволяющие в определенной степени осуществлять прогнозирование результатов маркетинга, продаж и обслуживания клиентов.
Существует достаточно много специализированных программных продуктов, обеспечивающих статистическую обработку численных данных, включая отдельные элементы прогнозирования. К таким продуктам относятся SPSS, Statistica и др. Эти средства имеют как достоинства, так и недостатки, существенно ограничивающие сферу их практического применения. Здесь необходимо отметить, что оценка приспособленности специализированных математических и статистических программных средств для решения задач прогнозирования обычными пользователями, не имеющими специальной подготовки, требует отдельного серьезного исследования и обсуждения.
Однако решение задач прогнозирования для потребителей из малого и среднего бизнеса с помощью мощных и дорогостоящих информационных систем и технологий практически невозможно в первую очередь по финансовым соображениям. Поэтому весьма перспективным направлением является развитие аналитических возможностей существующих и широко распространенных недорогих систем бухгалтерского и управленческого учета. Разрабатываемые дополнительные отчеты, основанные на конкретных бизнес-процессах и содержащие необходимую аналитическую информацию для конкретного пользователя, имеют высокое отношение «эффективность – стоимость» [6].