Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СХТ КОНСПЕКТ переделанный.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.09 Mб
Скачать

Лекция №3 Физические принципы получения низких температур

3.1. Фазовые переходы. Охлаждение при изменении агрегатного состояния.

3.2. Охлаждение с помощью дросселирования.

3.3. Охлаждение при расширении газов.

3.4. Вихревой эффект охлаждения.

3.5. Термоэлектрическое охлаждение.

В любом природном процессе осуществляется непрерывный переход теплоты от тел c высокой к телам с низкой температурой.

Охлаждающими телами в естественных условиях являются воздух, вода, лёд.

При естественном охлаждении температуру ниже температуры окружающей среды получить нельзя.

Рассмотрим искусственные способы охлаждения, основанные на различных физических процессах.

    1. Фазовые переходы

Все реальные вещества в зависимости от их параметров (в состоянии ниже критического) могут находиться в трех агрегатных состояниях или фазах: газовом, жидком и твердом. При изменении равновесных параметров (температуры и давления) вещество может переходить из одного фазового состояния в дру­гое. При этом поглощается или выделяется определенное количество тепла, называемое теплотой фазового перехода.

На рис. 4 изображена фазовая диаграмма Р-t для воды. Точка Т на этой диаграмме является тройной точкой, в которой сосуществуют все три фазы. Для воды эта точка соответствует температуре 0,01°С и давлению 0,006112 бар. В этой точке пересекаются три кривые состояния равновесия двух фаз. В точках кривой Т-К равновесно сосуществуют жидкость и пар, и эта кривая носит название кривой парообразования (насыщения). Фазовый переход из твёрдой фазы в жидкую проходит через линию плавления (обратно - кристаллизация), а из твёрдой фазы в газообразную через линию сублимации (десублимация).

Рис. 4. Фазовая Р-t диаграмма для воды.

В данном случае, нас интересуют изменения агрегатного состояния тела (плавление, кипение, сублимация), сопровождаемые поглощением значительного количества теплоты, расходуемой на внутреннюю работу по преодолению сил сцепления между молекулами. На практике для получения охлаждающего эффекта используют хладагенты, у которых упоминаемые процессы фазовых переходов протекают при низкой температуре при нормальном атмосферном давлении.

Способы охлаждения, основанные на использовании фазовых превращений веществ возможны только при неограниченном запасе охлаждающих тел. Непрерывное получение холода при использовании одного и того же количества охлаждающего вещества возможно, если после получения холодильного эффекта оно возвращается в начальное состояние. Это осуществляется с помощью холодильных установок.

3 .2 Дросселирование

Экспериментально установлено, что при прохождении жидкости или газа через узкое сечение (дроссельная шайба, кран, вентиль, пористая среда и др.) происходит снижение давления движущегося потока. Это явление называют дросселированием (мятием). Оно используется в технике для регулирования мощности паросиловых установок, в холодильной технике при получении холода и др.

Выясним, как изменяется температура потока в результате дросселирования. Температура идеального газа при дросселировании не изменяется. Экспериментально установлено, что при дросселировании реальных газов их температура изменяется (эффект Джоуля-Томсона), причём чем больший перепад давлений, тем больше изменение температуры. Для количественной характеристики явления введено понятие дифференциального дроссельного эффекта представляющего собой отношение изменения температуры газа при адиабатном дросселировании (h=const) к изменению давления в дефференциальном процессе.

(11)

Рис.5 Изменение давления

и скорости потока при

дросселировании через

отверстие диафрагмы.

Д ля реальных газов знак дроссель-эффекта определяется знаком числителя в выражении (1). Если числитель больше нуля, то αh >0 (положительный дроссель-эффект); а так как при дросселировании dp<0, то и dТ<0 т. е.температура газа понижается. При отрицательном дроссель-эффекте: αh <0 и dр<0, значит dТ>0, т.е. температура газа повышается. Если числитель в (1) равен нулю (нулевой дроссель-эффект), то αh =0 и dр<0, значит dТ=0, т.е температура газа не изменяется.

Рис.6 Кривая инверсии реального

газа на T-P диаграмме.

Один и тот же газ в зависимости от его начальных параметров в результате дроссель-эффекта может нагреваться, охлаждаться либо не менять своей температуры. Параметры реального газа, при которых реализуется нулевой дроссель-эффект, носят название точек инверсии, а температура – температурой инверсии. Геометрическое место точек инверсии называется кривой инверсии. На рис 1.3 представлена кривая инверсии на диаграмме Р-Т. Область внутри кривой инверсии даёт положительный дроссель-эффект. Кривая двухфазной области жидкость-пар О-С-К пересекается с кривой инверсии в точке С. Температура в точке С зависит от природы дроссельного вещества.

При параметрах, применяемых в хладо- и теплотехнике, область перегретого пара располагается внутри кривой инверсии, и таким образом, при адиабатном дросселировании перегретый пар охлаждается.