Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математический анализ Экономика 1 курс.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.41 Mб
Скачать

Вариант 29

Задание 1.

Найти производные данных функций.

а)

б)

в)

г)

д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) б) .

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,14, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f(x)=1/6x3-2x; [-3;4].

Задание 5.

К гальваническому источнику тока с электродвижущей силой в 4 в и внутренним сопротивлением 1 ом подключено сопротивление R. При каком значении R можно получить наибольшую мощность во внешней цепи? Определить наибольшую мощность тока во внешней цепи.

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б) .

Задание 7.

Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.

Задание 8.

Найти частные производные сложной функции:

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = 6x2 - 2xy +2x + 2y; A (2; 6); B (2,06; 5,92).

Задание 10.

Дана функция u = f (x; y; z), точки А (x0; y0; z0) и А11; y1; z1). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

u =xy2z3; A (3; 2; 1); А1 (5; 4; 2).

Задание 11.

Найти неопределенные интегралы. В пункте а) и б) результаты проверить дифференцированием.

а) б) в) г)

Задание 12.

Вычислить приближенное значение определенного интеграла с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Все вычисления производить с округлением до третьего десятичного знака.

Задание 13.

Вычислить несобственный интеграл: или установить его расходимость.

Задание 14.

Вычислить площадь фигуры, ограниченной линиями

Задание 15.

Переходя к полярным координатам, вычислить:

Задание 16.

Вычислить объем тела, ограниченного поверхностями:

Сделать чертеж данного тела и его проекции на плоскость Хоу.

Задание 17.

Пользуясь формулой Грина вычислить криволинейный интеграл: где - пробегаемый в положительном направлении (против движения часовой стрелки) контур треугольника с вершинами в точках: Сделать чертеж.

Вариант 30

Задание 1.

Найти производные данных функций.

а)

б)

в)

г)

д) .

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) б) .

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,57, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f(x)=-1/3x3+2,5x2-4x+1/3; [-1;5].

Задание 5.

Из равнобедренного треугольника АВС, боковые стороны которого АС=ВС=10 см и основание АВ=12 см, требуется вырезать параллелограмм с наибольшей площадью так, чтобы один из его углов совпадал с углом треугольника при основании. Найти стороны искомого параллелограмма и его площадь.

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б) .

Задание 7.

Составить уравнения касательной и нормали к астроиде , проведенных в точке .

Задание 8.

Найти полную производную сложной функции:

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = x2 + 3xy + 6y; A (4; 1); B (3,96; 1,03).

Задание 10.

Найти производную функции z =ln(x2+y2) в точке А (3; 4) в направлении градиента функции z.

Задание 11.

Найти неопределенные интегралы. В пункте а) и б) результаты проверить дифференцированием.

а) б) в) г)

Задание 12.

Вычислить приближенное значение определенного интеграла с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Все вычисления производить с округлением до третьего десятичного знака.

Задание 13.

Вычислить несобственный интеграл: или установить его расходимость.

Задание 14.

Вычислить площадь фигуры ограниченной линиями

Задание 15.

Переходя к полярным координатам, вычислить:

Задание 16.

Вычислить объем тела, ограниченного поверхностями:

Сделать чертеж данного тела и его проекции на плоскость Хоу.

Задание 17.

Пользуясь формулой Грина вычислить криволинейный интеграл: где - пробегаемый в положительном направлении (против движения часовой стрелки) контур треугольника с вершинами в точках: Сделать чертеж.