- •«Математическому анализу»
- •Введение в математический анализ Предел функции в точке
- •Предел функции при стремлении аргумента к бесконечности
- •Основные теоремы о пределах
- •Некоторые замечательные пределы
- •Тригонометрическая форма числа
- •Действия с комплексными числами
- •Дифференциальное исчисление функции одной переменной
- •Основные правила дифференцирования
- •Производные основных элементарных функций
- •Производная сложной функции
- •Производная показательно- степенной функции
- •Производная обратных функций
- •Асимптоты
- •Вертикальные асимптоты
- •Наклонные асимптоты
- •Параметрическое задание функции
- •Производная функции, заданной параметрически
- •Функции нескольких переменных
- •Производные и дифференциалы функций нескольких переменных
- •Полное приращение и полный дифференциал
- •Геометрический смысл полного дифференциала Касательная плоскость и нормаль к поверхности
- •Приближенные вычисления с помощью полного дифференциала
- •Частные производные высших порядков
- •Экстремум функции нескольких переменных
- •Условный экстремум
- •Производная по направлению
- •Градиент
- •Связь градиента с производной по направлению
- •Интегральное исчисление Первообразная функция
- •Неопределенный интеграл
- •Методы интегрирования
- •Непосредственное интегрирование
- •Способ подстановки (замены переменных)
- •Интегрирование по частям
- •Интегрирование элементарных дробей
- •Интегрирование рациональных функций Интегрирование рациональных дробей
- •Интегрирование некоторых тригонометрических функций
- •Интегрирование некоторых иррациональных функций
- •1 Способ. Тригонометрическая подстановка.
- •3 Способ. Метод неопределенных коэффициентов.
- •Определенный интеграл.
- •Свойства определенного интеграла
- •Вычисление определенного интеграла
- •Замена переменных
- •Интегрирование по частям
- •Несобственные интегралы
- •Интеграл от разрывной функции
- •Геометрические приложения определенного интеграла Вычисление площадей плоских фигур
- •Нахождение площади криволинейного сектора
- •Вычисление длины дуги кривой
- •Вычисление объемов тел Вычисление объема тела по известным площадям его параллельных сечений
- •Объем тел вращения
- •Площадь поверхности тела вращения
- •Кратные интегралы.
- •Двойные интегралы
- •Условия существования двойного интеграла
- •Свойства двойного интеграла
- •Вычисление двойного интеграла
- •Замена переменных в двойном интеграле
- •Двойной интеграл в полярных координатах
- •Тройной интеграл
- •Замена переменных в тройном интеграле
- •Геометрические и физические приложения кратных интегралов
- •Контрольная работа №1 «Дифференцирование» Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
Вариант 12
Задание 1.
Найти производные данных функций.
а)
|
б)
|
в)
|
г)
|
д). . |
Задание 2.
Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).
а)
у = sin2x;
б) x
= t2;
y
=
t.
Задание 3.
Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,89, с точностью до 0,001.
Задание 4.
Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].
f
(x)
=
Задание 5.
Определить размеры открытого бассейна с квадратным дном объемом V так, чтобы на облицовку его стен и дна пошло наименьшее количество материала.
Задание 6.
Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.
а)
б)
.
Задание 7.
Составить
уравнения касательной и нормали к
цитоиде
,
проведенных в точке, для которой
Задание 8.
Дана функция z = f (x; y). Показать, что:
F .
z = F =
Задание 9.
Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).
z = x2 + 3xy + 2y2 ; A (1; 3); B (1,03; 2,97).
Задание 10.
Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .
z = ln (x2 + xy2); A (-1; 2); a (3; -4).
Задание 11.
Найти неопределенные интегралы. В пункте а) и б) результаты проверить дифференцированием.
а)
б)
;
в)
г)
Задание 12.
Вычислить приближенное значение определенного интеграла с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Все вычисления производить с округлением до третьего десятичного знака.
Задание 13.
Вычислить несобственный интеграл или доказать его расходимость.
Задание 14.
Вычислить площадь фигуры, ограниченной гиперболой ху = 1, ветвью параболы у = х2, находящейся в первом квадранте, и прямой у = 4.
Задание 15.
Вычислить с помощью двойного интеграла в полярных координат площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (а > 0).
(х2 + у2)2 = 2а2 (х2 - у2).
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертеж данного тела и его проекции на плоскость х о у.
х
= 0, у = 0, z
= 0, x
+ у = 2, у =
.
Задание 17.
Вычислить криволинейный интеграл
где С есть треугольник с вершинами в точках О (0; 0); А (1; 0); В (0; 1), пробегаемый против хода часовой стрелки.
