- •«Математическому анализу»
- •Введение в математический анализ Предел функции в точке
- •Предел функции при стремлении аргумента к бесконечности
- •Основные теоремы о пределах
- •Некоторые замечательные пределы
- •Тригонометрическая форма числа
- •Действия с комплексными числами
- •Дифференциальное исчисление функции одной переменной
- •Основные правила дифференцирования
- •Производные основных элементарных функций
- •Производная сложной функции
- •Производная показательно- степенной функции
- •Производная обратных функций
- •Асимптоты
- •Вертикальные асимптоты
- •Наклонные асимптоты
- •Параметрическое задание функции
- •Производная функции, заданной параметрически
- •Функции нескольких переменных
- •Производные и дифференциалы функций нескольких переменных
- •Полное приращение и полный дифференциал
- •Геометрический смысл полного дифференциала Касательная плоскость и нормаль к поверхности
- •Приближенные вычисления с помощью полного дифференциала
- •Частные производные высших порядков
- •Экстремум функции нескольких переменных
- •Условный экстремум
- •Производная по направлению
- •Градиент
- •Связь градиента с производной по направлению
- •Интегральное исчисление Первообразная функция
- •Неопределенный интеграл
- •Методы интегрирования
- •Непосредственное интегрирование
- •Способ подстановки (замены переменных)
- •Интегрирование по частям
- •Интегрирование элементарных дробей
- •Интегрирование рациональных функций Интегрирование рациональных дробей
- •Интегрирование некоторых тригонометрических функций
- •Интегрирование некоторых иррациональных функций
- •1 Способ. Тригонометрическая подстановка.
- •3 Способ. Метод неопределенных коэффициентов.
- •Определенный интеграл.
- •Свойства определенного интеграла
- •Вычисление определенного интеграла
- •Замена переменных
- •Интегрирование по частям
- •Несобственные интегралы
- •Интеграл от разрывной функции
- •Геометрические приложения определенного интеграла Вычисление площадей плоских фигур
- •Нахождение площади криволинейного сектора
- •Вычисление длины дуги кривой
- •Вычисление объемов тел Вычисление объема тела по известным площадям его параллельных сечений
- •Объем тел вращения
- •Площадь поверхности тела вращения
- •Кратные интегралы.
- •Двойные интегралы
- •Условия существования двойного интеграла
- •Свойства двойного интеграла
- •Вычисление двойного интеграла
- •Замена переменных в двойном интеграле
- •Двойной интеграл в полярных координатах
- •Тройной интеграл
- •Замена переменных в тройном интеграле
- •Геометрические и физические приложения кратных интегралов
- •Контрольная работа №1 «Дифференцирование» Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
Тригонометрическая форма числа
Из
геометрических соображений видно, что
.
Тогда комплексное число можно представить
в виде:
Такая форма записи называется тригонометрической формой записи комплексного числа.
При этом величина r называется модулем комплексного числа, а угол наклона - аргументом комплексного числа.
.
Из геометрических соображений видно:
Очевидно, что комплексно – сопряженные числа имеют одинаковые модули и противоположные аргументы.
Действия с комплексными числами
Основные действия с комплексными числами вытекают из действий с многочленами.
1) Сложение и вычитание
2) Умножение
В тригонометрической форме:
,
С случае комплексно – сопряженных чисел:
3) Деление
В тригонометрической форме:
4) Возведение в степень
Из операции умножения комплексных чисел следует, что
В общем случае получим:
,
где n – целое положительное число.
Это выражение называется формулой Муавра.
(Абрахам де Муавр (1667 – 1754) – английский математик)
Формулу Муавра можно использовать для нахождения тригонометрических функций двойного, тройного и т.д. углов.
Пример. Найти формулы sin2 и cos2.
Рассмотрим
некоторое комплексное число
Тогда
с одной стороны
.
По
формуле Муавра:
Приравнивая,
получим
Т.к. два комплексных числа равны, если равны их действительные и мнимые части, то
Получили известные формулы двойного угла.
5) Извлечение корня из комплексного числа
Возводя в степень, получим:
Отсюда:
Таким образом, корень n – ой степени из комплексного числа имеет n различных значений.
Пример.
Даны два комплексных числа
.
Требуется а) найти значение выражения
в
алгебраической форме, б) для числа
найти тригонометрическую форму, найти
z20,
найти корни уравнения
Очевидно, справедливо следующее преобразование:
Далее производим деление двух комплексных чисел:
Получаем значение заданного выражения: 16(-i)4 = 16i4 =16.
б)
Число
представим в виде
,
где
Тогда
.
Для
нахождения
воспользуемся формулой Муавра.
Если
,
то
Дифференциальное исчисление функции одной переменной
Производная функции, ее геометрический и физический смысл
Определение. Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если он существует.
у
f(x)
f(x0 +x) P
f
f(x0) M
x
0 x0 x0 + x x
Пусть
f(x)
определена на некотором промежутке (a,
b).
Тогда
тангенс угла наклона секущей МР к графику
функции.
,
где - угол наклона касательной к графику функции f(x) в точке (x0, f(x0)).
Угол между кривыми может быть определен как угол между касательными, проведенными к этим кривым в какой- либо точке.
Уравнение
касательной к кривой:
Уравнение
нормали к кривой:
.
Фактически производная функции показывает как бы скорость изменения функции, как изменяется функция при изменении переменной.
Физический смысл производной функции f(t), где t- время, а f(t)- закон движения (изменения координат) – мгновенная скорость движения.
Соответственно, вторая производная функции- скорость изменения скорости, т.е. ускорение.
