- •«Математическому анализу»
- •Дифференциальные уравнения Обыкновенные дифференциальные уравнения
- •Свойства общего решения
- •Дифференциальные уравнения первого порядка
- •Уравнения с разделяющимися переменными
- •Однородные уравнения
- •Уравнения, приводящиеся к однородным
- •Разделяем переменные:
- •Линейные уравнения.
- •Линейные однородные дифференциальные уравнения.
- •Линейные неоднородные дифференциальные уравнения.
- •Метод Лагранжа.
- •Подставляем полученное соотношение в исходное уравнение
- •Уравнение Бернулли.
- •Дифференциальные уравнения высших порядков.
- •Уравнения, допускающие понижение порядка.
- •Уравнения, не содержащие явно искомой функции и ее производных до порядка k – 1 включительно.
- •Уравнения, не содержащие явно независимой переменной.
- •Линейные дифференциальные уравнения высших порядков.
- •Линейные однородные дифференциальные уравнения с произвольными коэффициентами.
- •Общее решение линейного однородного дифференциального уравнения второго порядка.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Линейные неоднородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами.
- •Нормальные системы обыкновенных дифференциальных уравнений.
- •Ряды Основные определения
- •Ряды с неотрицательными членами
- •Признак сравнения рядов с неотрицательными членами
- •Предельный признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакопеременные ряды Знакочередующиеся ряды
- •Абсолютная и условная сходимость рядов
- •Свойства абсолютно сходящихся рядов
- •Функциональные последовательности
- •Функциональные ряды
- •Свойства равномерно сходящихся рядов
- •Степенные ряды
- •Действия со степенными рядами
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Ряды Фурье Тригонометрический ряд
- •Достаточные признаки разложимости в ряд Фурье
- •Ряд Фурье для четных и нечетных функций
- •Ряды Фурье для функций любого периода
- •Контрольная работа №2 «Дифференциальные уравнения»
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
Линейные неоднородные дифференциальные уравнения
с произвольными коэффициентами.
Рассмотрим
уравнение вида
С
учетом обозначения
можно записать:
При этом будем полагать, что коэффициенты и правая часть этого уравнения непрерывны на некотором интервале (конечном или бесконечном).
Теорема.
Общее
решение линейного неоднородного
дифференциального уравнения
в
некоторой области есть сумма любого
его решения и общего решения соответствующего
линейного однородного дифференциального
уравнения.
Пример.
Решить уравнение
Решаем
линейное однородное уравнение
Решение неоднородного уравнения будет иметь вид:
Составляем систему уравнений:
Решим эту систему:
Из
соотношения
найдем функцию А(х).
Теперь находим В(х).
Подставляем полученные значения в формулу общего решения неоднородного уравнения:
Окончательный
ответ:
Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами.
Представляется возможным представить вид частного решения в зависимости от вида правой части неоднородного уравнения.
Различают следующие случаи:
I. Правая часть линейного неоднородного дифференциального уравнения имеет вид:
где
-
многочлен степени m.
Тогда частное решение ищется в виде:
Здесь Q(x)- многочлен той же степени, что и P(x), но с неопределенными коэффициентами, а r – число, показывающее сколько раз число является корнем характеристического уравнения для соответствующего линейного однородного дифференциального уравнения.
Пример.
Решить уравнение
.
Решим
соответствующее однородное уравнение:
Теперь найдем частное решение исходного неоднородного уравнения.
Сопоставим правую часть уравнения с видом правой части, рассмотренным выше.
Частное
решение ищем в виде:
,
где
Т.е.
Теперь определим неизвестные коэффициенты А и В.
Подставим частное решение в общем виде в исходное неоднородное дифференциальное уравнение.
Итого,
частное решение:
Тогда общее решение линейного неоднородного дифференциального уравнения:
II. Правая часть линейного неоднородного дифференциального уравнения имеет вид:
Здесь Р1(х) и Р2(х) – многочлены степени m1 и m2 соответственно.
Тогда частное решение неоднородного уравнения будет иметь вид:
где
число r
показывает, сколько раз число
является корнем характеристического
уравнения для соответствующего
однородного уравнения, а Q1(x)
и
Q2(x)
– многочлены степени не выше m,
где m-
большая из степеней m1
и m2.
Заметим, что если правая часть уравнения является комбинацией выражений рассмотренного выше вида, то решение находится как комбинация решений вспомогательных уравнений, каждое из которых имеет правую часть, соответствующую выражению, входящему в комбинацию.
Т.е.
если уравнение имеет вид:
,
то частное решение этого уравнения
будет
где
у1
и
у2
– частные решения вспомогательных
уравнений
и
Пример.
Решить уравнение
Составим характеристическое уравнение для соответствующего линейного однородного дифференциального уравнения:
Общее
решение однородного уравнения:
Теперь найдем частное решение неоднородного уравнения в виде:
Воспользуемся методом неопределенных коэффициентов.
Подставляя в исходное уравнение, получаем:
Частное
решение имеет вид:
Общее
решение линейного неоднородного
уравнения:
Пример.
Решить уравнение
Характеристическое
уравнение:
Общее
решение однородного уравнения:
Частное решение неоднородного уравнения: .
Находим производные и подставляем их в исходное неоднородное уравнение:
Получаем общее решение неоднородного дифференциального уравнения:
