- •«Математическому анализу»
- •Дифференциальные уравнения Обыкновенные дифференциальные уравнения
- •Свойства общего решения
- •Дифференциальные уравнения первого порядка
- •Уравнения с разделяющимися переменными
- •Однородные уравнения
- •Уравнения, приводящиеся к однородным
- •Разделяем переменные:
- •Линейные уравнения.
- •Линейные однородные дифференциальные уравнения.
- •Линейные неоднородные дифференциальные уравнения.
- •Метод Лагранжа.
- •Подставляем полученное соотношение в исходное уравнение
- •Уравнение Бернулли.
- •Дифференциальные уравнения высших порядков.
- •Уравнения, допускающие понижение порядка.
- •Уравнения, не содержащие явно искомой функции и ее производных до порядка k – 1 включительно.
- •Уравнения, не содержащие явно независимой переменной.
- •Линейные дифференциальные уравнения высших порядков.
- •Линейные однородные дифференциальные уравнения с произвольными коэффициентами.
- •Общее решение линейного однородного дифференциального уравнения второго порядка.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Линейные неоднородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами.
- •Нормальные системы обыкновенных дифференциальных уравнений.
- •Ряды Основные определения
- •Ряды с неотрицательными членами
- •Признак сравнения рядов с неотрицательными членами
- •Предельный признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакопеременные ряды Знакочередующиеся ряды
- •Абсолютная и условная сходимость рядов
- •Свойства абсолютно сходящихся рядов
- •Функциональные последовательности
- •Функциональные ряды
- •Свойства равномерно сходящихся рядов
- •Степенные ряды
- •Действия со степенными рядами
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Ряды Фурье Тригонометрический ряд
- •Достаточные признаки разложимости в ряд Фурье
- •Ряд Фурье для четных и нечетных функций
- •Ряды Фурье для функций любого периода
- •Контрольная работа №2 «Дифференциальные уравнения»
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
Решение
дифференциального уравнения вида
или, короче,
будем искать в виде
,
где k
= const.
Т.к.
то
При этом многочлен называется характеристическим многочленом дифференциального уравнения.
Для того, чтобы функция являлась решением исходного дифференциального уравнения, необходимо и достаточно, чтобы
т.е.
Т.к.
ekx
0,
то
- это уравнение называется характеристическим
уравнением.
Как
и любое алгебраическое уравнение степени
n,
характеристическое уравнение
имеет n
корней.
Каждому корню характеристического
уравнения ki
соответствует
решение дифференциального уравнения.
В зависимости от коэффициентов k характеристическое уравнение может иметь либо n различных действительных корней, либо среди действительных корней могут быть кратные корни, могут быть комплексно – сопряженные корни, как различные, так и кратные.
Не будем подробно рассматривать каждый случай, а сформулируем общее правило нахождения решения линейного однородного дифференциального уравнения с постоянными коэффициентами.
1) Составляем характеристическое уравнение и находим его корни.
2) Находим частные решения дифференциального уравнения, причем:
a) каждому действительному корню соответствует решение ekx;
б) каждому действительному корню кратности m ставится в соответствие m решений:
в)
каждой паре комплексно – сопряженных
корней
характеристического уравнение ставится
в соответствие два решения:
и
.
г) каждой паре m – кратных комплексно – сопряженных корней характеристического уравнения ставится в соответствие 2m решений:
3) Составляем линейную комбинацию найденных решений.
Эта линейная комбинация и будет являться общим решением исходного линейного однородного дифференциального уравнения с постоянными коэффициентами.
Пример.
Решить уравнение
.
Составим
характеристическое уравнение:
Общее
решение имеет вид:
Пример.
Решить уравнение
Это линейное однородное дифференциальное уравнение с переменными коэффициентами второго порядка. Для нахождения общего решения необходимо отыскать какое - либо частное решение.
Таким
частным решением будет являться функция
Исходное дифференциальное уравнение можно преобразовать:
Общее
решение имеет вид:
Окончательно:
Пример.
Решить уравнение
Составим
характеристическое уравнение:
Общее
решение:
Пример.
Решить уравнение
Характеристическое
уравнение:
Общее
решение:
Пример.
Решить уравнение
Характеристическое
уравнение:
Общее
решение:
Пример.
Решить уравнение
Характеристическое
уравнение:
Общее
решение:
Пример.
Решить уравнение
Это уравнение не является линейным, следовательно, приведенный выше метод решения к нему неприменим.
Понизим порядок уравнения с помощью подстановки
Тогда
Окончательно
получаем:
Это выражение будет общим решением исходного дифференциального уравнения. Полученное выше решение у1 = С1 получается из общего решения при С=0.
Пример.
Решить уравнение
Производим
замену переменной:
Общее
решение:
