- •«Математическому анализу»
- •Дифференциальные уравнения Обыкновенные дифференциальные уравнения
- •Свойства общего решения
- •Дифференциальные уравнения первого порядка
- •Уравнения с разделяющимися переменными
- •Однородные уравнения
- •Уравнения, приводящиеся к однородным
- •Разделяем переменные:
- •Линейные уравнения.
- •Линейные однородные дифференциальные уравнения.
- •Линейные неоднородные дифференциальные уравнения.
- •Метод Лагранжа.
- •Подставляем полученное соотношение в исходное уравнение
- •Уравнение Бернулли.
- •Дифференциальные уравнения высших порядков.
- •Уравнения, допускающие понижение порядка.
- •Уравнения, не содержащие явно искомой функции и ее производных до порядка k – 1 включительно.
- •Уравнения, не содержащие явно независимой переменной.
- •Линейные дифференциальные уравнения высших порядков.
- •Линейные однородные дифференциальные уравнения с произвольными коэффициентами.
- •Общее решение линейного однородного дифференциального уравнения второго порядка.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Линейные неоднородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами.
- •Нормальные системы обыкновенных дифференциальных уравнений.
- •Ряды Основные определения
- •Ряды с неотрицательными членами
- •Признак сравнения рядов с неотрицательными членами
- •Предельный признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакопеременные ряды Знакочередующиеся ряды
- •Абсолютная и условная сходимость рядов
- •Свойства абсолютно сходящихся рядов
- •Функциональные последовательности
- •Функциональные ряды
- •Свойства равномерно сходящихся рядов
- •Степенные ряды
- •Действия со степенными рядами
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Ряды Фурье Тригонометрический ряд
- •Достаточные признаки разложимости в ряд Фурье
- •Ряд Фурье для четных и нечетных функций
- •Ряды Фурье для функций любого периода
- •Контрольная работа №2 «Дифференциальные уравнения»
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
Уравнение Бернулли.
Определение. Уравнением Бернулли называется уравнение вида
где P и Q – функции от х или постоянные числа, а n – постоянное число, не равное 1.
Для
решения уравнения Бернулли применяют
подстановку
,
с помощью которой уравнение Бернулли
приводится к линейному.
Для этого разделим исходное уравнение на yn.
Применим
подстановку, учтя, что
.
Т.е. получилось линейное уравнение относительно неизвестной функции z.
Решение этого уравнения будем искать в виде:
Пример.
Решить уравнение
Разделим
уравнение на xy2:
Полагаем
.
Полагаем
Произведя обратную подстановку, получаем:
Пример.
Решить уравнение
Разделим
обе части уравнения на
Полагаем
Получили линейное неоднородное дифференциальное уравнение. Рассмотрим соответствующее ему линейное однородное уравнение:
Полагаем C = C(x) и подставляем полученный результат в линейное неоднородное уравнение, с учетом того, что:
Получаем:
Применяя обратную подстановку, получаем окончательный ответ:
Уравнения вида y = f(y’) и x = f(y’).
Решение уравнений, не содержащих в одном случае аргумента х, а в другом – функции у, ищем в параметрической форме, принимая за параметр производную неизвестной функции.
Для
уравнения первого типа получаем:
Делая
замену, получаем:
В результате этих преобразований имеем дифференциальное уравнение с разделяющимися переменными.
Общий интеграл в параметрической форме представляется системой уравнений:
Исключив из этой системы параметр р, получим общий интеграл и не в параметрической форме.
Для дифференциального уравнения вида x = f(y’) с помощью той же самой подстановки и аналогичных рассуждений получаем результат:
Дифференциальные уравнения высших порядков.
Определение. Дифференциальным уравнением порядка n называется уравнение вида:
В некоторых случаях это уравнение можно разрешить относительно y(n):
Так же как и уравнение первого порядка, уравнения высших порядков имеют бесконечное количество решений.
Определение.
Решение
удовлетворяет начальным условиям
,
если
Определение. Нахождение решения уравнения , удовлетворяющего начальным условиям , называется решением задачи Коши.
Дифференциальные уравнения высших порядков, решение которых может быть найдено аналитически, можно разделить на несколько основных типов.
Рассмотрим подробнее методы нахождения решений этих уравнений.
Уравнения, допускающие понижение порядка.
Понижение порядка дифференциального уравнения – основной метод решения уравнений высших порядков. Этот метод дает возможность сравнительно легко находить решение, однако, он применим далеко не ко всем уравнениям. Рассмотрим случаи, когда возможно понижение порядка.
Уравнения вида y(n) = f(x).
Если f(x) – функция непрерывная на некотором промежутке a < x < b, то решение может быть найдено последовательным интегрированием.
…………………………………………………………….
Пример.
Решить уравнение
с начальными условиями x0=0;
y0=1;
Подставим начальные условия:
Получаем
частное решение (решение задачи Коши):
.
