- •«Математическому анализу»
- •Дифференциальные уравнения Обыкновенные дифференциальные уравнения
- •Свойства общего решения
- •Дифференциальные уравнения первого порядка
- •Уравнения с разделяющимися переменными
- •Однородные уравнения
- •Уравнения, приводящиеся к однородным
- •Разделяем переменные:
- •Линейные уравнения.
- •Линейные однородные дифференциальные уравнения.
- •Линейные неоднородные дифференциальные уравнения.
- •Метод Лагранжа.
- •Подставляем полученное соотношение в исходное уравнение
- •Уравнение Бернулли.
- •Дифференциальные уравнения высших порядков.
- •Уравнения, допускающие понижение порядка.
- •Уравнения, не содержащие явно искомой функции и ее производных до порядка k – 1 включительно.
- •Уравнения, не содержащие явно независимой переменной.
- •Линейные дифференциальные уравнения высших порядков.
- •Линейные однородные дифференциальные уравнения с произвольными коэффициентами.
- •Общее решение линейного однородного дифференциального уравнения второго порядка.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Линейные неоднородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами.
- •Нормальные системы обыкновенных дифференциальных уравнений.
- •Ряды Основные определения
- •Ряды с неотрицательными членами
- •Признак сравнения рядов с неотрицательными членами
- •Предельный признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакопеременные ряды Знакочередующиеся ряды
- •Абсолютная и условная сходимость рядов
- •Свойства абсолютно сходящихся рядов
- •Функциональные последовательности
- •Функциональные ряды
- •Свойства равномерно сходящихся рядов
- •Степенные ряды
- •Действия со степенными рядами
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Ряды Фурье Тригонометрический ряд
- •Достаточные признаки разложимости в ряд Фурье
- •Ряд Фурье для четных и нечетных функций
- •Ряды Фурье для функций любого периода
- •Контрольная работа №2 «Дифференциальные уравнения»
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
Действия со степенными рядами
1) Интегрирование степенных рядов.
Если
некоторая функция f(x)
определяется степенным рядом:
,
то интеграл от этой функции можно
записать в виде ряда:
2) Дифференцирование степенных рядов.
Производная функции, которая определяется степенным рядом, находится по формуле:
3) Сложение, вычитание, умножение и деление степенных рядов.
Сложение и вычитание степенных рядов сводится к соответствующим операциям с их членами:
Произведение двух степенных рядов выражается формулой:
Коэффициенты сi находятся по формуле:
Деление двух степенных рядов выражается формулой:
Для
определения коэффициентов qn
рассматриваем произведение
,
полученное из записанного выше равенства
и решаем систему уравнений:
Ряды Фурье Тригонометрический ряд
Определение. Тригонометрическим рядом называется ряд вида:
или,
короче,
Действительные числа ai, bi называются коэффициентами тригонометрического ряда.
Если ряд представленного выше типа сходится, то его сумма представляет собой периодическую функцию с периодом 2, т.к. функции sinnx и cosnx также периодические функции с периодом 2.
Пусть тригонометрический ряд равномерно сходится на отрезке [-; ], а следовательно, и на любом отрезке в силу периодичности, и его сумма равна f(x).
Определим коэффициенты этого ряда.
Для решения этой задачи воспользуемся следующими равенствами:
Т.к. функция f(x) непрерывна на отрезке [-; ], то существует интеграл
Такой
результат получается в результате того,
что
.
Получаем:
Далее умножаем выражение разложения функции в ряд на cosnx и интегрируем в пределах от - до .
Отсюда
получаем:
Аналогично умножаем выражение разложения функции в ряд на sinnx и интегрируем в пределах от - до .
Получаем:
Выражение для коэффициента а0 является частным случаем для выражения коэффициентов an.
Таким образом, если функция f(x) – любая периодическая функция периода 2, непрерывная на отрезке [-; ] или имеющая на этом отрезке конечное число точек разрыва первого рода, то коэффициенты
существуют и называются коэффициентами Фурье для функции f(x).
Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.
Достаточные признаки разложимости в ряд Фурье
Теорема.
(Теорема Дирихле) Если
функция f(x)
имеет период 2
и на отрезке [-;]
непрерывна или имеет конечное число
точек разрыва первого рода, и отрезок
[-;]
можно разбить на конечное число отрезков
так, что внутри каждого из них функция
f(x)
монотонна, то ряд Фурье для функции f(x)
сходится при всех значениях х, причем
в точках непрерывности функции f(x)
его сумма равна f(x),
а в точках разрыва его сумма равна
,
т.е. среднему арифметическому предельных
значений слева и справа. При этом ряд
Фурье функции f(x)
сходится равномерно на любом отрезке,
который принадлежит интервалу
непрерывности функции f(x).
Функция f(x), для которой выполняются условия теоремы Дирихле называется кусочно – монотонной на отрезке [-;].
Теорема. Если функция f(x) имеет период 2, кроме того, f(x) и ее производная f’(x) – непрерывные функции на отрезке [-;] или имеют конечное число точек разрыва первого рода на этом отрезке, то ряд Фурье функции f(x) сходится при всех значениях х, причем в точках непрерывности его сумма равна f(x), а в точках разрыва она равна . При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x).
Функция, удовлетворяющая условиям этой теоремы, называется кусочно – гладкой на отрезке [-;].
