- •«Математическому анализу»
- •Дифференциальные уравнения Обыкновенные дифференциальные уравнения
- •Свойства общего решения
- •Дифференциальные уравнения первого порядка
- •Уравнения с разделяющимися переменными
- •Однородные уравнения
- •Уравнения, приводящиеся к однородным
- •Разделяем переменные:
- •Линейные уравнения.
- •Линейные однородные дифференциальные уравнения.
- •Линейные неоднородные дифференциальные уравнения.
- •Метод Лагранжа.
- •Подставляем полученное соотношение в исходное уравнение
- •Уравнение Бернулли.
- •Дифференциальные уравнения высших порядков.
- •Уравнения, допускающие понижение порядка.
- •Уравнения, не содержащие явно искомой функции и ее производных до порядка k – 1 включительно.
- •Уравнения, не содержащие явно независимой переменной.
- •Линейные дифференциальные уравнения высших порядков.
- •Линейные однородные дифференциальные уравнения с произвольными коэффициентами.
- •Общее решение линейного однородного дифференциального уравнения второго порядка.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Линейные неоднородные дифференциальные уравнения
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами.
- •Нормальные системы обыкновенных дифференциальных уравнений.
- •Ряды Основные определения
- •Ряды с неотрицательными членами
- •Признак сравнения рядов с неотрицательными членами
- •Предельный признак Даламбера
- •Признак Коши (радикальный признак)
- •Интегральный признак Коши
- •Знакопеременные ряды Знакочередующиеся ряды
- •Абсолютная и условная сходимость рядов
- •Свойства абсолютно сходящихся рядов
- •Функциональные последовательности
- •Функциональные ряды
- •Свойства равномерно сходящихся рядов
- •Степенные ряды
- •Действия со степенными рядами
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Ряды Фурье Тригонометрический ряд
- •Достаточные признаки разложимости в ряд Фурье
- •Ряд Фурье для четных и нечетных функций
- •Ряды Фурье для функций любого периода
- •Контрольная работа №2 «Дифференциальные уравнения»
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
Ряды с неотрицательными членами
При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.
Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.
Признак сравнения рядов с неотрицательными членами
Пусть даны два ряда и при un, vn 0.
Теорема. Если un vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .
Пример.
Исследовать на сходимость ряд
Т.к.
,
а гармонический ряд
расходится, то расходится и ряд
.
Пример.
Исследовать на сходимость ряд
Т.к.
,
а ряд
сходится (как убывающая геометрическая
прогрессия), то ряд
тоже сходится.
Также используется следующий признак сходимости:
Теорема.
Если
и существует предел
,
где h
– число, отличное от нуля, то ряды
и
ведут
одинаково в смысле сходимости.
Признак Даламбера
Если для ряда с положительными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство
то ряд сходится, если же для всех достаточно больших n выполняется условие
то ряд расходится.
Предельный признак Даламбера
Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.
Если
существует предел
,
то при
< 1 ряд сходится, а при
>1 – расходится. Если
= 1, то на вопрос о сходимости ответить
нельзя.
Пример.
Определить сходимость ряда
.
Вывод: ряд сходится.
Пример.
Определить сходимость ряда
Вывод: ряд сходится.
Признак Коши (радикальный признак)
Если для ряда с неотрицательными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство
,
то ряд сходится, если же для всех достаточно больших n выполняется неравенство
то ряд расходится.
Следствие.
Если существует предел
,
то при <1
ряд сходится, а при >1
ряд расходится.
Пример.
Определить сходимость ряда
.
Вывод: ряд сходится.
Пример.
Определить сходимость ряда
.
Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю.
,
таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.
Интегральный признак Коши
Если
(х)
– непрерывная положительная функция,
убывающая на промежутке
[1;),
то
ряд (1)
+ (2)
+ …+ (n)
+ … =
и несобственный интеграл
одинаковы в смысле сходимости.
Пример.
Ряд
сходится при >1
и расходится 1
т.к. соответствующий несобственный
интеграл
сходится при >1
и расходится 1.
Ряд
называется общегармоническим
рядом.
Следствие.
Если f(x)
и (х)
– непрерывные функции на интервале (a,
b]
и
то интегралы
и
ведут себя одинаково в смысле сходимости.
Знакопеременные ряды Знакочередующиеся ряды
Знакочередующийся ряд можно записать в виде:
где
Признак Лейбница
Если
у знакочередующегося ряда
абсолютные величины ui
убывают
и общий член стремится к нулю
,
то ряд сходится.
