- •Системы, комплексы и средства авиационной электросвязи
- •Принятые сокращения
- •Введение
- •Глава 3. Средства авиационной электросвязи
- •3.1. Классификация объектов и средств авиационной электросвязи
- •3.2. Принципы построения средств авиационной радиосвязи
- •3.2.1. Радиопередатчик
- •Радиопередатчик
- •3.2.2. Радиоприемные устройства
- •3.3. Средства радиосвязи овч диапазона
- •3.3.1. Радиосредства серии «Фазан-19»
- •Основные технические характеристики наземных средств радиосвязи овч-диапазона
- •Основные технические характеристики радиосредств «Фазан-19»
- •3.3.2. Радиооборудование серии «r&s Series 200»
- •Технические характеристики многоканальных овч-приемникa r&s eu230a, увч-приемникa r&s ed230a приведены в табл. 3.3.
- •Технические характеристики многоканальных
- •Технические характеристики овч передатчикa r&s su250a, увч передатчикa r&s sd230a
- •3.3.3. Радиосредства серии «Серия 2000»
- •Основные этх радиопередатчика Серии 2000
- •Основные этх радиоприёмника Серии 2000
- •Основные этх радиосредств овч-диапазона различных серий
- •3.3.4. Автономные радиоретрансляторы овч-диапазона
- •Многофункциональный автономный радиоретранслятор "габик"
- •Автономный радиоретранслятор «анр-1»
- •Основные этх аррт «анр-1»
- •7.2.6. Автоматизированные приемо-передающие центры
- •Автоматизированный приемо-передающий центр на основе радиосредств Фазан-19
- •Автоматизированный приемо-передающий центр на основе радиосредств серии 2000
- •7.2.7. Аппаратура и оборудование высокочастотных трактов радиоцентров овч-диапазона
- •Основные технические характеристики шау «Вятка»
- •Электрические характеристики if-1Av-125-r/2
- •7.2.8. Антенны, антенные комплексы, антенные поля
- •Технические характеристики антенного устройства анк-100-150
- •Основные технические характеристики антенн овч-диапазона
- •Основные технические характеристики антенны оа 2004v
- •Основные технические характеристики антенны оа 2001v
- •7.2.9. Бортовые радиостанции овч-диапазона
- •Основные технические характеристики радиостанций
- •7.3. Средства авиационной электросвязи вч-диапазона
- •7.3.1. Радиооборудование вч-диапазона серии «Пирс»
- •Основные технические характеристики наземных средств радиосвязи вч-диапазона
- •Основные этх радиостанции серии «Пирс»
- •7.3.2. Алларатура и оборудование высокочастотных трактов радиоцентров вч-диапазона
- •Технические характеристики дук 16х16
- •Технические характеристики шау-21
- •7.3.3. Антенны, антенные комплексы, антенные поля вч-диапазона
- •Характеристики передающих антенн ргд и лпа
- •Конструктивные характеристики антенн 3бс-2 и об-2
- •7.3.4. Бортовые радиостанции вч-диапазона
- •Основные технические данные
- •7.4. Средства авиационной спутниковой связи
- •7.5. Средства и системы передачи
- •Функциональные возможности гибкого мультиплексора тс-30: Гибкий мультиплексор тс- 30 может работать в режимах:
- •Классы качества передачи речи
- •Список литературы
Функциональные возможности гибкого мультиплексора тс-30: Гибкий мультиплексор тс- 30 может работать в режимах:
оконечного мультиплексора;
мультиплексора ввода-вывода;
кроссировочного мультиплексора.
В режиме оконечного мультиплексора: гибкий мультиплексор ТС-30 обеспечивает мультиплексирование до 60 аналоговых каналов и каналов передачи данных. Платы аналоговых канальных интерфейсов обеспечивают подключение абонентских телефонных аппаратов различного типа и соединительных линий между механическими АТС. Скорость передачи данных от 0,3 кбит/с до n х 64 кбит/с.
Мультиплексор ввода-вывода: в режиме работы мультиплексора ввода/вывода ТС-30 использует два первичных цифровых потока Е1. Гибкий мультиплексор имеет возможность ввести и вывести любые телефонные каналы или каналы передачи данных в общем количестве до 30 из любого потока Е1. Присвоение номеров временным интервалам и назначение направления передачи осуществляется программным способом.
Кроссировочный мультиплексор: в режиме кроссировочного мультиплексора ТС-30 использует 4 первичных цифровых потока Е1. ТС-30 осуществляет кроссировку каналов 64 кбит/с между всеми первичными цифровыми потоками и имеет возможность ввести-вывести до 30 каналов из любого потока Е1. Конфигурация кроссирования производится программно.
- Гибкий мультиплексор ОГМ-30 предназначен для применения на сельских, городских, ведомственных, внутризоновых и магистральных сетях связи в качестве:
оконечного мультиплексора;
мультиплексора ввода/вывода;
кроссировочного мультиплексора;
конвертера сигнализации.
Функциональные возможности гибкого мультиплексора ОГМ-30: формирование первичных цифровых сигналов электросвязи со скоростью передачи 2 048 кбит/с из:
аналоговых речевых сигналов от абонентского телефона;
аналоговых речевых сигналов с батарейной сигнализацией (3-7 проводов);
аналоговых речевых сигналов и сигналов взаимодействия с батарейной сигнализацией (3-х проводная, 7-ми проводная) от аналоговых АТС;
аналоговых речевых сигналов и сигналов взаимодействия с E&M - сигнализацией от аналоговых АТС;
аналоговых речевых сигналов и сигналов взаимодействия с одночастотной или двухчастотной сигнализацией в частотном диапазоне телефонного канала;
одного или двух цифровых сигналов 1 024 кбит/с аппаратуры ИКМ-15;
сигналов, соответствующих рекомендациям V.24, V.35, V.36, X.21.
- Мультиплексор-компрессор МК-Е1 предназначен для уплотнения и передачи данных потока E1 с одновременным мультиплексированием (инкапсуляцией) данных канала Ethernet, при организации связи по потоку Е1.
Оборудование обеспечивает передачу данных потока E1 и данных канала Ethernet одновременно в составе потока E1. В результате компрессии речевых каналов в потоке Е1 высвобождается пропускная способность, используемая для передачи данных Ethernet. Компрессия речевых каналов позволяет сохранить количество передаваемых речевых каналов при незначительной потере качества речи. Скорость сжатого речевого канала может выбираться из 4 доступных (16//24/32/40 Кбит/с). Количество каналов потока E1, подвергаемых компрессии, может изменяться пользователем. Данные Ethernet могут целиком занимать канальные интервалы, если в них не передаются данные телефонии. Количество и номера таких канальных интервалов также задаются пользователем. Соответственно, изменяется пропускная способность канала Ethernet, лежащая в диапазоне от 24 до 1984 Кбит/с.
Количество каналов потока E1, подвергающихся процессу компрессии-декомпрессии, может варьироваться, обеспечивая различную пропускную способность канала Ethernet, а также возможность использования незатронутых процессом компрессии-декомпрессии каналов потока E1 для передачи данных цифровых устройств (например, организация модемных соединений). Также возможно заполнение пустых речевых каналов данными Ethernet. Типовая схема применения мультиплексора МК-Е1 приведена на рис.10.
Функциональные возможности:
Передача данных потока E1;
Компрессия-декомпрессия канальных интервалов потока E1 в соответствии с рекомендацией G.726 (16/24/32/40 кбит/с);
Передача данных Ethernet (до 1472Кбит/с) при одновременном наличии потока E1 (если речевая информация передаётся во всех каналах и применяется компрессия 16Кбит/с);
Изменение числа канальных интервалов потока E1, подвергающихся компрессии-декомпрессии;
Изменение числа канальных интервалов, полностью занимаемых данными Ethernet;
Установка типа канала Ethernet 10BASE-T или 100BASE-TX.
- Программно-управляемый многофункциональный первичный мультиплексор серии МП предназначен для применения в качестве оборудования абонентского доступа на сетях связи различного назначения.
МП-1 предназначен для:
ввода/вывода двух сигналов первичного сетевого интерфейса в соответствии с Рекомендацией G.703 МСЭ-Т одного направления передачи (сигналы Е1);
формирования первичного группового сигнала с цикловой структурой согласно Рекомендаций G.704, G.706 МСЭ-Т, включая выполнение процедуры CRC-4 (сигнал ПГС Е1), из которого осуществляется ввод/вывод до 30 (31) цифровых каналов (64 кбит/c);
обеспечения цикловой и сверхцикловой синхронизации сигнала Е1;
объединения сигналов поканальной сигнализации в 16 канальный интервал (КИ) ПГС Е1;
ввода/вывода канала технического обслуживания (ТО). Канал ТО передается в ПГС Е1 в битах национального использования, скорость канала ТО - 2400 бит/с;
ввода/вывода сигнала внешней тактовой синхронизации.
- Мультиплексор Megaplex 2200 обеспечивает интегрированную передачу многочисленных выделенных каналов голоса, ISDN (Integrated Services Digital Network – цифровая сеть интегрального обслуживания) по четырем линиям E1. Мультиплексор может быть подключен к телефонной сети, сетям ISDN и другим цифровым сетям передачи данных непосредственно или через модемы.
Для передачи большого объема информации в потоке Е1 необходимо сжатие данных. Сжатие данных — процедура перекодирования данных, производимая с целью уменьшения их объёма. Применяется для более рационального использования устройств хранения и передачи данных.
Различают сжатие без потерь (когда возможно восстановление исходных данных без искажений) или с потерями (восстановление возможно с незначительными искажениями).
Каждый метод сжатия имеет свои достоинства и недостатки. Естественно, что большую сжимаемость данных обеспечивает сжатие данных с потерями. Современные процедуры сжатия позволяют уменьшить объем передаваемых данных в 2…5 раз при использовании процедуры сжатия без потерь и в десятки раз – при сжатии с потерями. Сжатие основано на устранении избыточности информации, содержащейся в исходных данных. Примером избыточности является повторение в тексте фрагментов (например, слов естественного или машинного языка). Подобная избыточность обычно устраняется заменой повторяющейся последовательности более коротким значением (кодом). Другой вид избыточности связан с тем, что некоторые значения в сжимаемых данных встречаются чаще других, при этом возможно заменять часто встречающиеся данные более короткими кодами, а редкие – более длинными (вероятностное сжатие). Сжатие данных, не обладающих свойством избыточности (например, случайный сигнал или шум), невозможно. Также, обычно невозможно сжатие зашифрованной информации. Методы сжатия без потерь могут быть распределены по типу данных, для которых они были созданы. Три основных типа данных для алгоритма сжатия данных это текст, изображения и звук. В принципе, любой многоцелевой алгоритм сжатия данных без потерь (многоцелевой означает, что он может обрабатывать любой тип бинарных данных) может использоваться для любого типа данных, но большинство из них неэффективны для каждого основного типа. Звуковые данные, например, не могут быть хорошо сжаты алгоритмом сжатия текста.
Большинство программ сжатия без потерь использует два различных типа алгоритмов: статистический и словарный. В алгоритмах статистического сжатия сжимаемые данные представляются в виде последовательности отдельных символов, каждому из которых присваивается кодовая комбинация в соответствии с вероятностью выдачи его источником сообщения. В словарных алгоритмах сжатия кодируются группы символов (строк, фраз, слов).
Функциональное соответствие процесса сжатия и обратного процесса – разжимания предполагает, что декодировщик имеет доступ к той же модели что и кодировщик. Это достигается двумя способами: статическим и динамическим. Статическое моделирование использует для процесса сжатия одну и ту же модель. Она известна заранее и хранится в памяти кодировщика и декодировщика. Динамическое моделирование предполагает наращивание (уточнение) модели в самом процессе сжатия.
Разновидностью адаптивного моделирования является полуадаптивное моделирование. В этом случае своя модель формируется для каждого конкретного сообщения. На рис.10 представлена обобщенная классификация методов сжатия.
Компания Cisco Systems приводит результаты тестирования кодеков по критерию наилучшей разборчивости речи. Оценка коде ков произведена по традиционной 5-ти бальной шкале, где наилучшему качеству звучания соответствует наибольший бал. Результаты представлены в таблице 1.
G.711 — это ITU-T стандарт для аудио компандирования. В основном используется в телефонии. Впервые был представлен в 1972 году. G.711 — стандарт для представления 8-ми битной компрессии PCM голоса с частотой Вопрос оценки качества кодирования голоса с использованием различных кодеков возник сразу же с момента их появления. При этом речь не ведётся об измерении коэффициента нелинейных и интермодуляционных искажений и отношения сигнал/шум, как это принято для оценки тракта звуковоспроизводящей аппаратуры. Специфика использования речевого кодека позволяет оперировать такой характеристикой как Усреднённое Совокупное Мнение (MOS – Mean Opinion Score - экспертная оценка).
дискретизации 8000 кадров/секунду и 8 Бит/кадр. Таким образом, G.711 кодек создает поток
Таблица 1
Результаты тестирования кодеков
Кодек |
Тип кодека |
Скорость кодирования |
Задержка при кодировании |
Размер кадра |
Оценка |
G.711 |
ИКМ |
64 кбит/с |
0,75 мс |
0,125 мс |
4,1 |
G.726 |
АДИКМ |
32 кбит/с |
1 мс |
0,125 мс |
3,85 |
G.728 |
LD – CELP |
16 кбит/с |
От 3 до 5 мс |
0,625 мс |
3,61 |
G.729 |
CS – ACELP (без VAD) |
8 кбит/с |
10 мс |
10 мс |
3,92 |
G.723.1 |
MP – MLQ |
6,3 кбит/с |
30 мс |
30 мс |
3,9 |
G.723.1 |
ACELP |
5,3 кбит/с |
30 мс |
30 мс |
3,65 |
64 Кбит/с. Существуют два основных алгоритма преобразования ТЧ сигнала в цифровой сигнал, представленных в стандарте, Mu-law (М-кодирование) (используется в Северной Америке и Японии) и A-law (А-кодирование) (используется в Европе и в остальном мире). Оба алгоритма являются логарифмическими, но более поздний a-law был изначально предназначен для компьютерной обработки процессов. Стандарт также определяет последовательность кодов, соответствующих уровню сигнала 0 Дб.
Основные уравнения:
Mu-law:
y = ln(1 + ux) / ln(1 + u), (2)
где u = 255
A-law:
y = Ax / (1 + ln A) для x <= 1/A (3)
y = (1 + ln Ax) / (1 + ln A) для 1/A <= x <= 1, (4)
где A = 87,6
Необходимо отметить, что ITU определяет, что нулевой бит имеет значение 128, а седьмой — значение 1. Это отличается от широко принятого определения, что бит 7 = 128, а бит 0 = 1. Также необходимо отметить, что при отправке данных через E0 (G.703), MSB (знаковый бит) отсылается первым, а LSB отсылается последним.
G.723.1 — один из базовых кодеков для приложений IP-телефонии. Утвержден ITU-T в рекомендации G.723.1 в ноябре 1995 года. Выбран форумом IMTC как базовый для приложений ip-телефонии. Кодек G.723.1 генерирует кадры длительностью 30 мс, предварительно анализируя 7,5 мс сигнала. Предусмотрено два режима работы: 6,3 Кбит/с (кадр имеет размер 189 битов, дополненных до 24 байтов) и 5,3 Кбит/с (кадр имеет размер 158 битов, дополненных до 20 байтов). Режим работы может меняться динамически от кадра к кадру. Оба режима обязательны для реализации. Оценка MOS составляет 3,9 в режиме 6,3 Кбит/с и 3,65 в режиме 5,3 Кбит/с. Кодек специфицирован на основе операций как с плавающей точкой, так и с фиксированной точкой в виде кода на языке С. Реализация кодека на процессоре с фиксированной точкой требует производительности около 16 MIPS. Кодек G.723.1 имеет детектор речевой активности и обеспечивает генерацию комфортного шума на удаленном конце в период молчания. Эти функции специфицированы в приложении A (Annex А) к рекомендации G.723.1. Параметры фонового шума кодируются очень маленькими кадрами размером 4 байта. Если параметры шума не меняются существенно, передача полностью прекращается.
G.726 кодек является стандартом ITU-T адаптивной импульсно-кодовой модуляции - ADPCM и описывает передачу голоса полосой в 16, 24, 32, и 40 Кбит/с. Он замещает собой другие стандарты – G.721, который описывает ADPCM передачу голоса полосой в 32 килобит/сек, и G.723, который описывает ADPCM передачу в 24 и 40 Кбит/с. Четыре полосы кодека G.726 соотносят обычно с размерами сэмплов в битах, это 2-х, 3-х, 4-х, и 5-ти битовый соответственно. Наиболее часто используемый среди них 32 Кбит/с, который равен ровно половине полосы стандартного кодека G.711, поэтому его использование сразу повышает полезную нагрузку сети на 100%. В первую очередь используется на интернациональных транках в телефонных сетях. Он также является стандартным кодеком, используемым в беспроводных телефонах системы DECT, а также используется в некоторых камерах фирмы Canon.
G.729 — это узкополосный речевой кодек, который применяется для эффективного цифрового представления узкополосной телефонной речи (сигнала телефонного качества). Такая речь характеризуется полосой между 300 и 3400 Гц и может быть оцифрована с частотой квантования 8 кГц. В идеале речевой кодек должен представлять речь такой разрядностью, какая только возможна. В этом случае восстановленная речь будет точно соответствовать оригиналу. На практике приходится выбирать разрядность кодека и мириться с некоторой погрешностью квантования. G.729 — один из перспективных типов кодеков, в частности, стандарт G.729 — 8Кбит/с. Согласно теории, речевой сигнал длительностью в одну секунду можно полностью описать (то есть оцифровать, передать или сохранить в цифровом виде и затем восстановить в исходный сигнал по цифровому представлению) цифровым потоком 60 байт/сек. Идея оцифровывать и передавать (или сохранять) в цифровом виде не сам сигнал, а его параметр (количество переходов через ноль, спектральные характеристики и др.), чтобы затем по этим параметрам выбирать модель голосового тракта и синтезировать исходный сигнал, лежит в основе вокодеров (VOice CODER) или синтезирующих кодеков. Для всех типов кодеков справедливо правило: чем меньше плотность цифрового потока, тем больше восстановленный сигнал отличается от оригинала. Однако восстановленный сигнал гибридных кодеков обладает вполне высокими характеристиками, восстанавливается тембр речевого сигнала, его динамические характеристики, другими словами, его «узнаваемость» и «распознаваемость». Алгоритм основан на модели кодирования с использованием линейного предсказания с возбуждением по алгебраической кодовой книге (CELP-модель). Кодер оперирует с кадрами речевого сигнала длиной 10мс, дискретизованными с частотой 8кГц, что соответствует 80-ти 16-битным отсчетам в линейном законе. Для каждого кадра производится анализ речевого сигнала и выделяются параметры модели (коэффициенты фильтра линейного предсказания, индексы и коэффициенты усиления в адаптивной и фиксированной кодовых книгах). Далее эти параметры кодируются и передаются в канал. В декодере битовая посылка используется для восстановления параметров сигнала возбуждения и коэффициентов синтезирующего фильтра. Речь восстанавливается путем пропускания сигнала возбуждения через кратковременный синтезирующий фильтр. Синтезирующий фильтр имеет полюсную передаточную функцию 10-го порядка. Для работы синтезатора основного тона используется адаптивная кодовая книга. Впоследствии речь улучшается адаптивной постфильтрацией. В случае потери передаваемой кодером битовой посылки, исходные данные для речевого синтезатора получаются интерполяцией данных с предыдущих «хороших» кадров, но при этом энергия интерполированного речевого сигнала постепенно уменьшается, что не создает особого дискомфорта у слушателя. Вокодер обрабатывает кадры речевых сигналов длиной 10мс. Дополнительно существует задержка длиной 5мс (look-ahead buffer), что в сумме выливается в алгоритмическую задержку 15мс. Задержки речевого сигнала в практическом приложении этого алгоритма также определяются временем, затрачиваемым на:
процессы кодирования и декодирования;
передачу по каналу;
мультиплексирование при комбинировании аудиоданных с другими видами данных.
Возможность передачи голосовых сообщений через сеть с пакетной коммутацией впервые была реализована в 1993 году. Данная технология получила название VoIP (Voice over IP). Одним из частных приложений данной технологии является IP-телефония — услуга по передаче телефонных разговоров абонентов по протоколу IP. Основными преимуществами технологии VoIP является сокращение требуемой полосы пропускания, что обеспечивается учётом статистических характеристик речевого трафика:
блокировкой передачи пауз (диалоговых, слоговых, смысловых и др.), которые могут составлять до 40-50 % времени занятия канала передачи;
высокой избыточностью речевого сигнала и его сжатием (без потери качества при восстановлении) до уровня 20-40 % исходного сигнала.
Трафик VoIP критичен к задержкам пакетов в сети, но обладает толерантностью (устойчивостью) к потерям отдельных пакетов. Так, потеря до 5 % пакетов не приводит к ухудшению разборчивости речи. При передаче телефонного трафика по технологии VoIP должны учитываться жёсткие требования стандарта ISO 9000 к качеству услуг, характеризующие:
качество установления соединения, определяемое в основном быстротой установления соединения;
качество соединения, показателем которого являются сквозные (воспринимаемые пользователем) задержки и качество воспринимаемой речи.
Уровень QoS качества передачи речи можно соотнести с одним из четырёх классов: таблица 2.
В результате для обеспечения требований QoS при передаче телефонного трафика по технологии VoIP (особенно в условиях ограниченной пропускной способности сети, характерной для сетей специальной связи) необходимо использовать ряд дополнительных механизмов, не существующих в классических IP-сетях. К этим механизмам относятся:
использование специфических вокодеров;
уменьшение задержек при передаче пакетов по сети;
использование специализированных декодеров, устойчивых к потерям пакетов.
Таблица 2
