- •Часть I. Теория механизмов и машин
- •1 Определения и классификации
- •2 Структурная формула механизма
- •2.1 Число степеней свободы
- •2.2 Связи кинематических пар
- •2.3 Избыточные связи механизма
- •2.4 Вывод структурной формулы
- •2.5 Устранение избыточных связей
- •2.6 Двумерные модели механизма
- •3 Кинематика рычажных механизмов
- •3.1 Определение положений
- •3.1.1 Группы Ассура
- •3.1.2 Замена высших пар
- •3.2 Планы скоростей и ускорений
- •3.2.1 Группа Ассура с вращательными парами
- •3.2.2 Группа Ассура с внешней поступательной парой
- •3.3 Метод кинематических диаграмм
- •3.3.1 Построение диаграмм
- •3.3.2 Сущность производных функции положения
- •3.4 Метод векторных контуров
- •3.5 Простейшие задачи синтеза
- •3.5.1 Синтез по крайним положениям коромысла
- •3.5.2 Синтез по положениям шатуна
- •3.5.3 Синтез по заданной шатунной кривой
- •4 Кинематика кулачковых механизмов
- •4.1 Схемы и определения
- •4.2 Анализ механизма первой схемы
- •4.2.1 Кинематические диаграммы
- •4.2.2 Угол давления
- •4.3 Синтез механизма первой схемы
- •4.3.1 Начальный радиус и эксцентриситет
- •4.3.2 Построение профиля кулачка
- •5 Кинематика зубчатых механизмов
- •5.1 Цилиндрические прямозубые передачи
- •5.1.1 Среднее передаточное отношение
- •5.1.2 Мгновенное передаточное отношение
- •5.1.3 Центроиды зацепления
- •5.2 Эвольвентное зацепление
- •5.2.1 Принцип образования зацепления
- •5.2.2 Эвольвента, её свойства и уравнения
- •5.2.3 Элементы колёсного зацепления
- •5.2.4 Элементы реечного зацепления
- •5.3 Профилирование зубьев
- •5.3.1 Метод обката
- •5.3.2 Коррекция эвольвентного зацепления
- •5.3.3 Исходный производящий контур
- •5.4 Параметры колеса и зацепления
- •5.4.1 Станочное зацепление
- •5.4.2 Рабочее зацепление
- •5.4.3 Блокирующие контуры
- •5.5 Цилиндрические косозубые передачи
- •5.5.1 Образование косозубого зацепления
- •5.5.2 Изготовление зацепления
- •5.5.3 Коэффициент перекрытия косозубой передачи.
- •5.6 Конические передачи
- •5.6.1 Прямозубое эвольвентное зацепление
- •5.6.2 Изготовление зацепления
- •5.6.3 Червячное зацепление
- •5.7 Сложные зубчатые передачи
- •5.7.1 Передачи с неподвижными осями колёс
- •5.7.2 Планетарные передачи
- •5.7.3 Синтез планетарной передачи
- •5.7.4 Волновая передача
- •6 Силовой расчёт механизмов
- •6.1 Постановка задачи
- •6.2 Силы инерции
- •6.3 Методы силового расчёта
- •6.4 Пример погруппного силового расчёта
- •6.4.1 Расчёт группы 4, 5
- •6.4.2 Расчёт группы 2, 3
- •6.4.3 Расчёт начального механизма
- •6.4.4 Теорема Жуковского
- •6.4.5 Проверка силового расчёта
- •7 Динамика машин
- •7.1 Приведение сил и масс
- •7.2 Определение скорости звена приведения
- •7.2.1 Скорость из уравнения кинетической энергии
- •7.2.2 Скорость по диаграмме ф. Виттенбауэра
- •7.2.3 Дифференциальное уравнение движения машины
- •7.3 Подбор маховика
- •7.4 Уравновешивание вращающихся звеньев
- •7.5 Уравновешивание механизмов
- •Часть II. Детали машин и основы конструирования
- •8 Основы проектирования деталей машин
- •8.1 Составные части машины
- •8.2 Основные критерии работоспособности и расчёта деталей машин
- •9 Соединения деталей машин
- •9.1 Сварные соединения
- •9.1.1 Общая характеристика
- •9.1.2 Виды сварных соединений и типы сварных швов
- •9.1.3 Расчёт сварных швов.
- •Расчёт и конструирование стыковых сварных швов
- •Расчёт и конструирование угловых сварных швов
- •9.2 Шпоночные соединения
- •9.2.1 Общие сведения
- •9.2.2 Расчёт и конструирование
- •Соединения призматическими шпонками
- •Соединения клиновыми шпонками
- •9.3 Шлицевые (зубчатые) соединения
- •9.3.1 Общая характеристика
- •9.3.2 Расчёт и конструирование
- •9.4 Резьбовые соединения
- •9.4.1 Общие сведения
- •9.4.2 Расчёт резьбовых соединений при статических нагрузках
- •10 Механические передачи
- •10.1 Общие сведения. Характеристики передач
- •10.2 Зубчатые передачи
- •10.2.1 Общие сведения и классификация
- •10.2.2 Краткая характеристика и расчёт параметров зубчатых и червячных передач
- •Цилиндрическая прямозубая передача
- •Цилиндрическая косозубая передача.
- •Коническая зубчатая передача
- •Червячные передачи
- •10.2.3 Условия работы зуба в зацеплении. Понятие о контактных и изгибных напряжениях
- •Червячная передача
- •10.2.5 Расчёт прочности зубчатых передач
- •Расчёт на контактную прочность
- •Расчёт на прочность при изгибе
- •10.2.6 Смазка зубчатых передач
- •10.3 Ремённые и цепные передачи
- •10.3.1 Ремённые передачи Общие сведения
- •Составные части ремённой передачи
- •Механика работы и основы расчёта ремённой передачи
- •10.3.2 Цепные передачи.
- •Элементы цепной передачи (звёздочки и цепи)
- •Механика работы и основы расчёта цепной передачи
- •11 Детали и узлы, обслуживающие механические передачи
- •11.1 Валы и оси
- •11.1.1 Общие сведения и классификация
- •11.1.2 Критерии работоспособности и расчёта валов и осей
- •11.1.3 Расчёт осей и валов на статистическую прочность Расчёт осей на изгиб
- •Расчёт вала на кручение
- •Расчёт вала на совместное действие изгиба и кручения
- •11.2 Подшипники скольжения
- •11.2.1 Критерии работоспособности подшипников скольжения
- •11.2.2 Расчёт подшипников скольжения в режиме полужидкостного трения
- •11.3 Подшипники качения
- •11.3.1 Практический расчёт (подбор) подшипников качения
- •11.4 Механические муфты
- •11.4.1 Общие сведения, назначение и классификация
- •11.4.2 Краткая характеристика муфт
- •Список рекомендуемой литературы
- •Часть 1. Теория механизмов и машин
- •1 Определения и классификации 5
- •2 Структурная формула механизма 6
- •3 Кинематика рычажных механизмов 16
- •4 Кинематика кулачковых механизмов 39
- •5 Кинематика зубчатых механизмов 45
- •10 Механические передачи 134
- •11 Детали и узлы, обслуживающие механические передачи 161
3.2.2 Группа Ассура с внешней поступательной парой
На рис. 3.9, а эту группу образуют звенья 4, 5. Чтобы не повторяться, движение звеньев 1, 2, 3 предшествующего механизма считается известным. Задача состоит в определении скорости и ускорения только точки .
Рис. 3.9. Построение плана скоростей и плана ускорений для двухзвенной группы Ассура с внешней поступательной парой
Определение
скорости точки
.
Для решения задачи вводят систему
координат
,
движущуюся поступательно, и систему
,
неизменно связанную со звеном 2
предшествующего механизма. Первую из
этих систем считают несущей для звена 4,
вторую – несущей для звена 5. Из
вытекающих отсюда разложений движения
составляют уравнения:
(3.5)
До сих пор при составлении
уравнений не было необходимости в
указании номера звена, к которому
относится та или иная точка, т. к.
подразумевались шарнирные точки или
просто шарниры. Теперь же этого
недостаточно, и
– это скорость шарнира
,
объединяющего точки
,
,
а
– скорость только точки
,
отмеченной на звене 2 и неизменно
связанной с ним. Соответственно,
есть скорость точки
относительно звена 2.
Переносные скорости
и
в приведённой выше системе уравнений
известны из предполагаемого анализа
предшествующего механизма. Относительные
скорости известны своими линиями
действия, а именно:
,
.
Всего этого достаточно, чтобы решить
систему. Результат показан на рис. 3.9,
б.
Определение ускорения точки . Из тех же разложений движения, что и в случае скоростей, следует:
(3.6)
Переносные ускорения
и
известны из предполагаемого анализа
предшествующего механизма. Нормальную
составляющую вычисляют по формуле
.
Входящую сюда скорость
берут из плана скоростей. Тангенциальная
составляющая
перпендикулярна
,
величина её неизвестна.
Ускорение
точки
относительно звена 2 параллельно
,
величина его также неизвестна. Ускорение
Кориолиса вычисляют по формуле
.
Входящая сюда скорость
предполагается известной из анализа
предшествующего механизма. Скорость
берут из плана скоростей, её изображает
вектор
.
Направление ускорения Кориолиса получают
поворотом вектора
на
в сторону скорости
.
Таким образом, ускорение
известно и по величине, и по направлению.
На рисунке его изображает вектор
.
Перед решением системы уравнений ускорение переставляют на последнее место, т. к. оно известно только линией действия. На пересечении линий действия последних слагаемых получают конец f ускорения (рис. 3.9, в).
Рассмотренный общий случай анализа цепи 4, 5 распадается на два частных. В первом случае (рис.3.10, а) эта цепь приводится в движение слева, во втором (рис. 3.10, б) – справа. Круговой стрелкой на обеих схемах отмечено звено с заданным движением.
Рис. 3.10. Частные случаи присоединения цепи 4, 5
При определении скоростей в первом случае из системы (3.5) выпадает нижнее уравнение, во втором – верхнее. При определении ускорений в первом случае из системы (3.6) выпадает также нижнее уравнение, во втором – выпадает только ускорение . Решение упростившихся уравнений не составляет труда, поэтому далее не рассматривается.
