Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Прикл мех 2 Ермак.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
60.69 Mб
Скачать

3.1.1 Группы Ассура

Чтобы выявить количественные характеристики своих групп, Ассур предложил рассматривать их как надстоечную часть особого механизма, стойкой которого является предшествующий механизм, превращённый в одно твёрдое тело. Для цепи 2, 3 (см. рис. 3.1) – это тело Ф1, для цепи 4, 5 – тело Ф2.

У надстоечной части число степеней свободы . Подставляя это число в структурную формулу двумерной модели механизма ( ) и ограничиваясь механизмами, не содержащими избыточных связей (у них ), Ассур получил:

.

Двумерные модели рычажных механизмов содержат только вращательные и поступательные кинематические пары. Все они двусвязные (см. рис. 2.8), поэтому общее число связей представимо в виде , где – количество кинематических пар с двумя связями. С учётом всех допущений получают: . Отсюда

.

Таким должно быть соотношение между числом звеньев и числом двусвязных кинематических пар в группах Ассура. Последнему уравнению удовлетворяют лишь чётные , т. к. может быть только целым. Соглашаясь на это, получают следующую таблицу структурных параметров групп Ассура:

n

2

4

6

8

p2

3

6

9

12

Чисто шарнирные варианты или, иначе, основные модификации двузвенных и четырёхзвенных групп, построенных в соответствии с таблицей, показаны на рис. 3.3.

Рис. 3.3. Основные модификации двухзвенных и четырёхзвенных групп Ассура

За штрихпунктирной линией скрыт механизм, предшествующий присоединению группы Ассура. Группы а, б, в отнесены ко второму, третьему и четвёртому классам соответственно. Группа а называется двухповодковой, группа б – трёхповодковой. Поводками в группе б называются звенья 1, 2, 3, звено 4 называется базовым.

Прочие модификации групп Ассура любого класса получают последовательной заменой вращательных пар поступательными. На рис. 3.4 изображены все модификации группы первого класса – двухповодковой.

Последняя модификация (рис. 3.4, е) не обладает определённостью положения относительно предшествующего механизма (стрелки показывают направление возможного движения звеньев). Это вырожденная группа Ассура.

При определённой геометрии вырожденной может оказаться любая другая группа, но последняя остаётся вырожденной всегда. Механизмы, содержащие вырожденные группы Ассура, в данном курсе не рассматриваются.

Рис. 3.4. Все модификации двухзвенной группы Ассура

На рис. 3.5 показаны некоторые модификации трёхповодковой группы Ассура.

Рис. 3.5. Некоторые модификации четырёхзвенной группы Ассура

Во всех модификациях звено 4 – базовое, 1, 2, 3 – поводки. Нет необходимости запоминать все модификации групп Ассура, достаточно помнить только основные, показанные на рис. 3.3.

Методы определения скоростей и ускорений в часто встречающихся группах Ассура хорошо разработаны, поэтому после разложения механизма на группы Ассура его кинематический анализ перестаёт быть проблемой.

Чтобы разложить на группы Ассура зубчатый или кулачковый механизм, пары с точечным касанием – высшие – заменяют кинематически эквивалентными цепями, содержащими только низшие пары – вращательные и поступательные.