- •Часть I. Теория механизмов и машин
- •1 Определения и классификации
- •2 Структурная формула механизма
- •2.1 Число степеней свободы
- •2.2 Связи кинематических пар
- •2.3 Избыточные связи механизма
- •2.4 Вывод структурной формулы
- •2.5 Устранение избыточных связей
- •2.6 Двумерные модели механизма
- •3 Кинематика рычажных механизмов
- •3.1 Определение положений
- •3.1.1 Группы Ассура
- •3.1.2 Замена высших пар
- •3.2 Планы скоростей и ускорений
- •3.2.1 Группа Ассура с вращательными парами
- •3.2.2 Группа Ассура с внешней поступательной парой
- •3.3 Метод кинематических диаграмм
- •3.3.1 Построение диаграмм
- •3.3.2 Сущность производных функции положения
- •3.4 Метод векторных контуров
- •3.5 Простейшие задачи синтеза
- •3.5.1 Синтез по крайним положениям коромысла
- •3.5.2 Синтез по положениям шатуна
- •3.5.3 Синтез по заданной шатунной кривой
- •4 Кинематика кулачковых механизмов
- •4.1 Схемы и определения
- •4.2 Анализ механизма первой схемы
- •4.2.1 Кинематические диаграммы
- •4.2.2 Угол давления
- •4.3 Синтез механизма первой схемы
- •4.3.1 Начальный радиус и эксцентриситет
- •4.3.2 Построение профиля кулачка
- •5 Кинематика зубчатых механизмов
- •5.1 Цилиндрические прямозубые передачи
- •5.1.1 Среднее передаточное отношение
- •5.1.2 Мгновенное передаточное отношение
- •5.1.3 Центроиды зацепления
- •5.2 Эвольвентное зацепление
- •5.2.1 Принцип образования зацепления
- •5.2.2 Эвольвента, её свойства и уравнения
- •5.2.3 Элементы колёсного зацепления
- •5.2.4 Элементы реечного зацепления
- •5.3 Профилирование зубьев
- •5.3.1 Метод обката
- •5.3.2 Коррекция эвольвентного зацепления
- •5.3.3 Исходный производящий контур
- •5.4 Параметры колеса и зацепления
- •5.4.1 Станочное зацепление
- •5.4.2 Рабочее зацепление
- •5.4.3 Блокирующие контуры
- •5.5 Цилиндрические косозубые передачи
- •5.5.1 Образование косозубого зацепления
- •5.5.2 Изготовление зацепления
- •5.5.3 Коэффициент перекрытия косозубой передачи.
- •5.6 Конические передачи
- •5.6.1 Прямозубое эвольвентное зацепление
- •5.6.2 Изготовление зацепления
- •5.6.3 Червячное зацепление
- •5.7 Сложные зубчатые передачи
- •5.7.1 Передачи с неподвижными осями колёс
- •5.7.2 Планетарные передачи
- •5.7.3 Синтез планетарной передачи
- •5.7.4 Волновая передача
- •6 Силовой расчёт механизмов
- •6.1 Постановка задачи
- •6.2 Силы инерции
- •6.3 Методы силового расчёта
- •6.4 Пример погруппного силового расчёта
- •6.4.1 Расчёт группы 4, 5
- •6.4.2 Расчёт группы 2, 3
- •6.4.3 Расчёт начального механизма
- •6.4.4 Теорема Жуковского
- •6.4.5 Проверка силового расчёта
- •7 Динамика машин
- •7.1 Приведение сил и масс
- •7.2 Определение скорости звена приведения
- •7.2.1 Скорость из уравнения кинетической энергии
- •7.2.2 Скорость по диаграмме ф. Виттенбауэра
- •7.2.3 Дифференциальное уравнение движения машины
- •7.3 Подбор маховика
- •7.4 Уравновешивание вращающихся звеньев
- •7.5 Уравновешивание механизмов
- •Часть II. Детали машин и основы конструирования
- •8 Основы проектирования деталей машин
- •8.1 Составные части машины
- •8.2 Основные критерии работоспособности и расчёта деталей машин
- •9 Соединения деталей машин
- •9.1 Сварные соединения
- •9.1.1 Общая характеристика
- •9.1.2 Виды сварных соединений и типы сварных швов
- •9.1.3 Расчёт сварных швов.
- •Расчёт и конструирование стыковых сварных швов
- •Расчёт и конструирование угловых сварных швов
- •9.2 Шпоночные соединения
- •9.2.1 Общие сведения
- •9.2.2 Расчёт и конструирование
- •Соединения призматическими шпонками
- •Соединения клиновыми шпонками
- •9.3 Шлицевые (зубчатые) соединения
- •9.3.1 Общая характеристика
- •9.3.2 Расчёт и конструирование
- •9.4 Резьбовые соединения
- •9.4.1 Общие сведения
- •9.4.2 Расчёт резьбовых соединений при статических нагрузках
- •10 Механические передачи
- •10.1 Общие сведения. Характеристики передач
- •10.2 Зубчатые передачи
- •10.2.1 Общие сведения и классификация
- •10.2.2 Краткая характеристика и расчёт параметров зубчатых и червячных передач
- •Цилиндрическая прямозубая передача
- •Цилиндрическая косозубая передача.
- •Коническая зубчатая передача
- •Червячные передачи
- •10.2.3 Условия работы зуба в зацеплении. Понятие о контактных и изгибных напряжениях
- •Червячная передача
- •10.2.5 Расчёт прочности зубчатых передач
- •Расчёт на контактную прочность
- •Расчёт на прочность при изгибе
- •10.2.6 Смазка зубчатых передач
- •10.3 Ремённые и цепные передачи
- •10.3.1 Ремённые передачи Общие сведения
- •Составные части ремённой передачи
- •Механика работы и основы расчёта ремённой передачи
- •10.3.2 Цепные передачи.
- •Элементы цепной передачи (звёздочки и цепи)
- •Механика работы и основы расчёта цепной передачи
- •11 Детали и узлы, обслуживающие механические передачи
- •11.1 Валы и оси
- •11.1.1 Общие сведения и классификация
- •11.1.2 Критерии работоспособности и расчёта валов и осей
- •11.1.3 Расчёт осей и валов на статистическую прочность Расчёт осей на изгиб
- •Расчёт вала на кручение
- •Расчёт вала на совместное действие изгиба и кручения
- •11.2 Подшипники скольжения
- •11.2.1 Критерии работоспособности подшипников скольжения
- •11.2.2 Расчёт подшипников скольжения в режиме полужидкостного трения
- •11.3 Подшипники качения
- •11.3.1 Практический расчёт (подбор) подшипников качения
- •11.4 Механические муфты
- •11.4.1 Общие сведения, назначение и классификация
- •11.4.2 Краткая характеристика муфт
- •Список рекомендуемой литературы
- •Часть 1. Теория механизмов и машин
- •1 Определения и классификации 5
- •2 Структурная формула механизма 6
- •3 Кинематика рычажных механизмов 16
- •4 Кинематика кулачковых механизмов 39
- •5 Кинематика зубчатых механизмов 45
- •10 Механические передачи 134
- •11 Детали и узлы, обслуживающие механические передачи 161
3.1.1 Группы Ассура
Чтобы выявить количественные характеристики своих групп, Ассур предложил рассматривать их как надстоечную часть особого механизма, стойкой которого является предшествующий механизм, превращённый в одно твёрдое тело. Для цепи 2, 3 (см. рис. 3.1) – это тело Ф1, для цепи 4, 5 – тело Ф2.
У надстоечной
части число степеней свободы
.
Подставляя это число в структурную
формулу двумерной модели механизма (
)
и ограничиваясь механизмами, не
содержащими избыточных связей (у них
),
Ассур получил:
.
Двумерные
модели рычажных механизмов содержат
только вращательные и поступательные
кинематические пары. Все они двусвязные
(см. рис. 2.8), поэтому общее число связей
представимо в виде
,
где
– количество кинематических пар с двумя
связями. С учётом всех допущений получают:
.
Отсюда
.
Таким должно быть соотношение между числом звеньев и числом двусвязных кинематических пар в группах Ассура. Последнему уравнению удовлетворяют лишь чётные , т. к. может быть только целым. Соглашаясь на это, получают следующую таблицу структурных параметров групп Ассура:
-
n
2
4
6
8
…
p2
3
6
9
12
…
Чисто шарнирные варианты или, иначе, основные модификации двузвенных и четырёхзвенных групп, построенных в соответствии с таблицей, показаны на рис. 3.3.
Рис. 3.3. Основные модификации двухзвенных и четырёхзвенных групп Ассура
За штрихпунктирной линией скрыт механизм, предшествующий присоединению группы Ассура. Группы а, б, в отнесены ко второму, третьему и четвёртому классам соответственно. Группа а называется двухповодковой, группа б – трёхповодковой. Поводками в группе б называются звенья 1, 2, 3, звено 4 называется базовым.
Прочие модификации групп Ассура любого класса получают последовательной заменой вращательных пар поступательными. На рис. 3.4 изображены все модификации группы первого класса – двухповодковой.
Последняя модификация (рис. 3.4, е) не обладает определённостью положения относительно предшествующего механизма (стрелки показывают направление возможного движения звеньев). Это вырожденная группа Ассура.
При определённой геометрии вырожденной может оказаться любая другая группа, но последняя остаётся вырожденной всегда. Механизмы, содержащие вырожденные группы Ассура, в данном курсе не рассматриваются.
Рис. 3.4. Все модификации двухзвенной группы Ассура
На рис. 3.5 показаны некоторые модификации трёхповодковой группы Ассура.
Рис. 3.5. Некоторые модификации четырёхзвенной группы Ассура
Во всех модификациях звено 4 – базовое, 1, 2, 3 – поводки. Нет необходимости запоминать все модификации групп Ассура, достаточно помнить только основные, показанные на рис. 3.3.
Методы определения скоростей и ускорений в часто встречающихся группах Ассура хорошо разработаны, поэтому после разложения механизма на группы Ассура его кинематический анализ перестаёт быть проблемой.
Чтобы разложить на группы Ассура зубчатый или кулачковый механизм, пары с точечным касанием – высшие – заменяют кинематически эквивалентными цепями, содержащими только низшие пары – вращательные и поступательные.
