- •Часть I. Теория механизмов и машин
- •1 Определения и классификации
- •2 Структурная формула механизма
- •2.1 Число степеней свободы
- •2.2 Связи кинематических пар
- •2.3 Избыточные связи механизма
- •2.4 Вывод структурной формулы
- •2.5 Устранение избыточных связей
- •2.6 Двумерные модели механизма
- •3 Кинематика рычажных механизмов
- •3.1 Определение положений
- •3.1.1 Группы Ассура
- •3.1.2 Замена высших пар
- •3.2 Планы скоростей и ускорений
- •3.2.1 Группа Ассура с вращательными парами
- •3.2.2 Группа Ассура с внешней поступательной парой
- •3.3 Метод кинематических диаграмм
- •3.3.1 Построение диаграмм
- •3.3.2 Сущность производных функции положения
- •3.4 Метод векторных контуров
- •3.5 Простейшие задачи синтеза
- •3.5.1 Синтез по крайним положениям коромысла
- •3.5.2 Синтез по положениям шатуна
- •3.5.3 Синтез по заданной шатунной кривой
- •4 Кинематика кулачковых механизмов
- •4.1 Схемы и определения
- •4.2 Анализ механизма первой схемы
- •4.2.1 Кинематические диаграммы
- •4.2.2 Угол давления
- •4.3 Синтез механизма первой схемы
- •4.3.1 Начальный радиус и эксцентриситет
- •4.3.2 Построение профиля кулачка
- •5 Кинематика зубчатых механизмов
- •5.1 Цилиндрические прямозубые передачи
- •5.1.1 Среднее передаточное отношение
- •5.1.2 Мгновенное передаточное отношение
- •5.1.3 Центроиды зацепления
- •5.2 Эвольвентное зацепление
- •5.2.1 Принцип образования зацепления
- •5.2.2 Эвольвента, её свойства и уравнения
- •5.2.3 Элементы колёсного зацепления
- •5.2.4 Элементы реечного зацепления
- •5.3 Профилирование зубьев
- •5.3.1 Метод обката
- •5.3.2 Коррекция эвольвентного зацепления
- •5.3.3 Исходный производящий контур
- •5.4 Параметры колеса и зацепления
- •5.4.1 Станочное зацепление
- •5.4.2 Рабочее зацепление
- •5.4.3 Блокирующие контуры
- •5.5 Цилиндрические косозубые передачи
- •5.5.1 Образование косозубого зацепления
- •5.5.2 Изготовление зацепления
- •5.5.3 Коэффициент перекрытия косозубой передачи.
- •5.6 Конические передачи
- •5.6.1 Прямозубое эвольвентное зацепление
- •5.6.2 Изготовление зацепления
- •5.6.3 Червячное зацепление
- •5.7 Сложные зубчатые передачи
- •5.7.1 Передачи с неподвижными осями колёс
- •5.7.2 Планетарные передачи
- •5.7.3 Синтез планетарной передачи
- •5.7.4 Волновая передача
- •6 Силовой расчёт механизмов
- •6.1 Постановка задачи
- •6.2 Силы инерции
- •6.3 Методы силового расчёта
- •6.4 Пример погруппного силового расчёта
- •6.4.1 Расчёт группы 4, 5
- •6.4.2 Расчёт группы 2, 3
- •6.4.3 Расчёт начального механизма
- •6.4.4 Теорема Жуковского
- •6.4.5 Проверка силового расчёта
- •7 Динамика машин
- •7.1 Приведение сил и масс
- •7.2 Определение скорости звена приведения
- •7.2.1 Скорость из уравнения кинетической энергии
- •7.2.2 Скорость по диаграмме ф. Виттенбауэра
- •7.2.3 Дифференциальное уравнение движения машины
- •7.3 Подбор маховика
- •7.4 Уравновешивание вращающихся звеньев
- •7.5 Уравновешивание механизмов
- •Часть II. Детали машин и основы конструирования
- •8 Основы проектирования деталей машин
- •8.1 Составные части машины
- •8.2 Основные критерии работоспособности и расчёта деталей машин
- •9 Соединения деталей машин
- •9.1 Сварные соединения
- •9.1.1 Общая характеристика
- •9.1.2 Виды сварных соединений и типы сварных швов
- •9.1.3 Расчёт сварных швов.
- •Расчёт и конструирование стыковых сварных швов
- •Расчёт и конструирование угловых сварных швов
- •9.2 Шпоночные соединения
- •9.2.1 Общие сведения
- •9.2.2 Расчёт и конструирование
- •Соединения призматическими шпонками
- •Соединения клиновыми шпонками
- •9.3 Шлицевые (зубчатые) соединения
- •9.3.1 Общая характеристика
- •9.3.2 Расчёт и конструирование
- •9.4 Резьбовые соединения
- •9.4.1 Общие сведения
- •9.4.2 Расчёт резьбовых соединений при статических нагрузках
- •10 Механические передачи
- •10.1 Общие сведения. Характеристики передач
- •10.2 Зубчатые передачи
- •10.2.1 Общие сведения и классификация
- •10.2.2 Краткая характеристика и расчёт параметров зубчатых и червячных передач
- •Цилиндрическая прямозубая передача
- •Цилиндрическая косозубая передача.
- •Коническая зубчатая передача
- •Червячные передачи
- •10.2.3 Условия работы зуба в зацеплении. Понятие о контактных и изгибных напряжениях
- •Червячная передача
- •10.2.5 Расчёт прочности зубчатых передач
- •Расчёт на контактную прочность
- •Расчёт на прочность при изгибе
- •10.2.6 Смазка зубчатых передач
- •10.3 Ремённые и цепные передачи
- •10.3.1 Ремённые передачи Общие сведения
- •Составные части ремённой передачи
- •Механика работы и основы расчёта ремённой передачи
- •10.3.2 Цепные передачи.
- •Элементы цепной передачи (звёздочки и цепи)
- •Механика работы и основы расчёта цепной передачи
- •11 Детали и узлы, обслуживающие механические передачи
- •11.1 Валы и оси
- •11.1.1 Общие сведения и классификация
- •11.1.2 Критерии работоспособности и расчёта валов и осей
- •11.1.3 Расчёт осей и валов на статистическую прочность Расчёт осей на изгиб
- •Расчёт вала на кручение
- •Расчёт вала на совместное действие изгиба и кручения
- •11.2 Подшипники скольжения
- •11.2.1 Критерии работоспособности подшипников скольжения
- •11.2.2 Расчёт подшипников скольжения в режиме полужидкостного трения
- •11.3 Подшипники качения
- •11.3.1 Практический расчёт (подбор) подшипников качения
- •11.4 Механические муфты
- •11.4.1 Общие сведения, назначение и классификация
- •11.4.2 Краткая характеристика муфт
- •Список рекомендуемой литературы
- •Часть 1. Теория механизмов и машин
- •1 Определения и классификации 5
- •2 Структурная формула механизма 6
- •3 Кинематика рычажных механизмов 16
- •4 Кинематика кулачковых механизмов 39
- •5 Кинематика зубчатых механизмов 45
- •10 Механические передачи 134
- •11 Детали и узлы, обслуживающие механические передачи 161
Часть II. Детали машин и основы конструирования
Цель курса «Детали машин и основы конструирования» (ДМ и ОК) состоит в том, чтобы исходя из функционального назначения машины определить методы, нормы и правила проектирования её составных частей с учётом рациональных материалов, размеров, форм и взаимного расположения поверхностей, квалитетов точности и шероховатости поверхности, а также соответствия нормам технической документации.
При изучении курса «ДМ и ОК» инженер (студент) выступает как конструктор, что означает – исходя из назначения машины он должен спроектировать все составные её части, что предполагает рассчитать размеры и изобразить (рабочая документация) составные части для изготовления, а также выбрать (назначить) стандартные изделия и выполнить сборочный чертеж машины в целом.
Объект изучения курса «ДМ и ОК» – машина и её составные части.
8 Основы проектирования деталей машин
8.1 Составные части машины
Машины состоят из деталей и сборочных единиц (узлов). Деталью называется составная часть машины, изготовленная из однородного материала без сборочных операций.
Сборочная единица или узел – изделие, состоящее из нескольких деталей с применением сборочных операций.
Детали и узлы машин делятся на специальные и общего назначения. Специальные детали и узлы применяются в одной или нескольких группах машин (поршень ДВС, шпиндель станка, гребной винт и т. д.). Детали и узлы общего назначения используются в большинстве или во всех группах машин. В свою очередь они делятся на:
1. Соединения и соединительные детали (разъёмные и неразъёмные).
2. Механические передачи (зубчатые, ремённые, цепные и т. д.).
3. Детали и узлы, обслуживающие передачи (валы, оси, подшипники скольжения и качения и механические муфты).
Курс «ДМ и ОК» изучает детали и узлы общего назначения. При проектировании составных частей машин конструктор должен придерживаться определенных требований.
8.2 Основные критерии работоспособности и расчёта деталей машин
Работоспособность – состояние изделия, при котором оно способно выполнять свои функции в пределах, заданных нормативно-технической документацией. Для оценки работоспособности деталей машин используются следующие критерии:
Прочность – способность деталей и узлов машин сопротивляться разрушению. Основные методы оценки прочности:
1. Сравнение расчётных (рабочих) напряжений, возникающих при действии эксплуатационных нагрузок, с допускаемыми напряжениями. Условие прочности рассчитываемой детали в этом случае определяется неравенством
(8.1)
или
,
(8.2)
где σ и [σ] – соответственно расчётное и допускаемое нормальные напряжения; τ и [τ] – рабочее и допускаемое касательные напряжения.
2. Сравнение действительного коэффициента запаса прочности s для рассматриваемой детали с допускаемым коэффициентом запаса прочности [s]. Условие прочности при этом определяется неравенством
.
(8.3)
Практически расчёт по допускаемым напряжениям обычно выполняют как проектировочный для определения требуемых размеров.
Кроме проектировочного расчёта выполняют уточнённый проверочный расчёт с учётом концентраторов напряжений, масштабного факторов и т. д.
Жёсткость – способность деталей воспринимать действующую нагрузку без появления недопустимых деформаций.
Различают объёмную (собственную) и контактную жёсткость деталей машин. Расчёты на объёмную жёсткость производят по зависимостям, известным из курса сопротивления материалов, а на контактную жёсткость – по теории контактных напряжений и деформаций.
Устойчивость – критерий работоспособности длинных и тонких стержней, а также тонких пластин и оболочек. Потеря устойчивости происходит при достижении нагрузкой критического значения, что приводит к изменению заданной формы или размеров рассчитываемой детали. Расчёт устойчивости производят по формулам сопротивления материалов.
Износостойкость – стойкость деталей машин против различного рода износа. Это важнейший критерий трущихся деталей, т. е. работающих в паре. До 90 % всех деталей и узлов машин выходят из строя из-за различного рода износа.
Вопросы изнашивания рассматривают в курс триботехника, который изучает виды износа и их характеристику, меры защиты от износа, классификацию смазочных материалов и их обозначение. Основной вид износа деталей машин – абразивный, который заключается в попадании из внешней среды частиц (абразивов), твёрдость которых выше, чем твёрдость трущихся материалов. Это приводит к изменению размеров, формы и массы деталей машин.
Меры борьбы с износом: оптимизация смазочных материалов, улучшение способов очистки смазок и защиты (уплотнений) трущихся поверхностей, повышение износостойкости материалов пар трения.
Виброустойчивость – способность конструкции воспринимать нагрузки без недопустимых колебаний в определённом диапазоне частоты – важнейший критерий быстроходных деталей машин. Вибрации вызывают повышение шума, колебаний частей машины, что может вызвать их разрушение. Расчёты на виброустойчивость производятся по специальной теории колебаний.
Теплостойкость – способность деталей и узлов машин воспринимать нагрузки без чрезмерного нагрева. Работа некоторых машин и их составных частей сопровождается повышенным тепловыделением (тепловые двигатели, червячные передачи, подшипники скольжения и т. д.). Это снижает работоспособность деталей машин и ухудшает качество их работы. Поэтому в данных машинах необходимо выполнять тепловые расчёты.
Экономичность – обеспечение минимальной себестоимости изготовления изделия. В структуру себестоимости входят затраты на материалы, оборудование, технологическую оснастку, заработную плату и начисления на неё и т. д. Расчёт себестоимости производится по известным зависимостям экономической теории.
Технологичность – свойство конструкции изделия быть изготовленным с минимальными затратами. При разработке деталей и узлов машин конструктор должен создать их устройство таким, чтобы оно было как можно простым, дешевым при изготовлении и удобным при использовании.
Эстетичность (технический дизайн) – придание изделию красивого внешнего конкурентоспособного вида. В настоящее время вопросы дизайна занимают важное место при изготовлении машин. Потребитель первоначально оценивает внешний вид изделия, а потом его характеристики.
При проектировании машин конструктор должен принимать во внимание перечисленные критерии работоспособности. Однако все их закладывать в составные части машин нет необходимости. Исходя из назначения и условий работы каждой части машин необходимо выбирать важнейшие из этих критериев, что определяется опытом и квалификацией конструктора.
Долговечность – свойство конструкции изделия сохранять работоспособность до предельного состояния при установленной системе технического обслуживания и ремонтов. Важный показатель долговечности – срок службы или технический ресурс, который может измеряться во временных показателях (часы, месяцы, годы и т. д.), числе циклов нагружения, километрах пробега и т. д.
Детали и узлы машин могут быть работоспособны, долговечны, но не надежны.
Надёжность – свойство объекта выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в нужных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонтов, хранения и транспортировки. К основным показателям надёжности относятся отказ, безотказность, сохраняемость, ремонтопригодность, вероятность безотказной работы. Более подробно эти характеристики изучаются в отдельном курсе – «Основы теории надёжности».
