- •Часть I. Теория механизмов и машин
- •1 Определения и классификации
- •2 Структурная формула механизма
- •2.1 Число степеней свободы
- •2.2 Связи кинематических пар
- •2.3 Избыточные связи механизма
- •2.4 Вывод структурной формулы
- •2.5 Устранение избыточных связей
- •2.6 Двумерные модели механизма
- •3 Кинематика рычажных механизмов
- •3.1 Определение положений
- •3.1.1 Группы Ассура
- •3.1.2 Замена высших пар
- •3.2 Планы скоростей и ускорений
- •3.2.1 Группа Ассура с вращательными парами
- •3.2.2 Группа Ассура с внешней поступательной парой
- •3.3 Метод кинематических диаграмм
- •3.3.1 Построение диаграмм
- •3.3.2 Сущность производных функции положения
- •3.4 Метод векторных контуров
- •3.5 Простейшие задачи синтеза
- •3.5.1 Синтез по крайним положениям коромысла
- •3.5.2 Синтез по положениям шатуна
- •3.5.3 Синтез по заданной шатунной кривой
- •4 Кинематика кулачковых механизмов
- •4.1 Схемы и определения
- •4.2 Анализ механизма первой схемы
- •4.2.1 Кинематические диаграммы
- •4.2.2 Угол давления
- •4.3 Синтез механизма первой схемы
- •4.3.1 Начальный радиус и эксцентриситет
- •4.3.2 Построение профиля кулачка
- •5 Кинематика зубчатых механизмов
- •5.1 Цилиндрические прямозубые передачи
- •5.1.1 Среднее передаточное отношение
- •5.1.2 Мгновенное передаточное отношение
- •5.1.3 Центроиды зацепления
- •5.2 Эвольвентное зацепление
- •5.2.1 Принцип образования зацепления
- •5.2.2 Эвольвента, её свойства и уравнения
- •5.2.3 Элементы колёсного зацепления
- •5.2.4 Элементы реечного зацепления
- •5.3 Профилирование зубьев
- •5.3.1 Метод обката
- •5.3.2 Коррекция эвольвентного зацепления
- •5.3.3 Исходный производящий контур
- •5.4 Параметры колеса и зацепления
- •5.4.1 Станочное зацепление
- •5.4.2 Рабочее зацепление
- •5.4.3 Блокирующие контуры
- •5.5 Цилиндрические косозубые передачи
- •5.5.1 Образование косозубого зацепления
- •5.5.2 Изготовление зацепления
- •5.5.3 Коэффициент перекрытия косозубой передачи.
- •5.6 Конические передачи
- •5.6.1 Прямозубое эвольвентное зацепление
- •5.6.2 Изготовление зацепления
- •5.6.3 Червячное зацепление
- •5.7 Сложные зубчатые передачи
- •5.7.1 Передачи с неподвижными осями колёс
- •5.7.2 Планетарные передачи
- •5.7.3 Синтез планетарной передачи
- •5.7.4 Волновая передача
- •6 Силовой расчёт механизмов
- •6.1 Постановка задачи
- •6.2 Силы инерции
- •6.3 Методы силового расчёта
- •6.4 Пример погруппного силового расчёта
- •6.4.1 Расчёт группы 4, 5
- •6.4.2 Расчёт группы 2, 3
- •6.4.3 Расчёт начального механизма
- •6.4.4 Теорема Жуковского
- •6.4.5 Проверка силового расчёта
- •7 Динамика машин
- •7.1 Приведение сил и масс
- •7.2 Определение скорости звена приведения
- •7.2.1 Скорость из уравнения кинетической энергии
- •7.2.2 Скорость по диаграмме ф. Виттенбауэра
- •7.2.3 Дифференциальное уравнение движения машины
- •7.3 Подбор маховика
- •7.4 Уравновешивание вращающихся звеньев
- •7.5 Уравновешивание механизмов
- •Часть II. Детали машин и основы конструирования
- •8 Основы проектирования деталей машин
- •8.1 Составные части машины
- •8.2 Основные критерии работоспособности и расчёта деталей машин
- •9 Соединения деталей машин
- •9.1 Сварные соединения
- •9.1.1 Общая характеристика
- •9.1.2 Виды сварных соединений и типы сварных швов
- •9.1.3 Расчёт сварных швов.
- •Расчёт и конструирование стыковых сварных швов
- •Расчёт и конструирование угловых сварных швов
- •9.2 Шпоночные соединения
- •9.2.1 Общие сведения
- •9.2.2 Расчёт и конструирование
- •Соединения призматическими шпонками
- •Соединения клиновыми шпонками
- •9.3 Шлицевые (зубчатые) соединения
- •9.3.1 Общая характеристика
- •9.3.2 Расчёт и конструирование
- •9.4 Резьбовые соединения
- •9.4.1 Общие сведения
- •9.4.2 Расчёт резьбовых соединений при статических нагрузках
- •10 Механические передачи
- •10.1 Общие сведения. Характеристики передач
- •10.2 Зубчатые передачи
- •10.2.1 Общие сведения и классификация
- •10.2.2 Краткая характеристика и расчёт параметров зубчатых и червячных передач
- •Цилиндрическая прямозубая передача
- •Цилиндрическая косозубая передача.
- •Коническая зубчатая передача
- •Червячные передачи
- •10.2.3 Условия работы зуба в зацеплении. Понятие о контактных и изгибных напряжениях
- •Червячная передача
- •10.2.5 Расчёт прочности зубчатых передач
- •Расчёт на контактную прочность
- •Расчёт на прочность при изгибе
- •10.2.6 Смазка зубчатых передач
- •10.3 Ремённые и цепные передачи
- •10.3.1 Ремённые передачи Общие сведения
- •Составные части ремённой передачи
- •Механика работы и основы расчёта ремённой передачи
- •10.3.2 Цепные передачи.
- •Элементы цепной передачи (звёздочки и цепи)
- •Механика работы и основы расчёта цепной передачи
- •11 Детали и узлы, обслуживающие механические передачи
- •11.1 Валы и оси
- •11.1.1 Общие сведения и классификация
- •11.1.2 Критерии работоспособности и расчёта валов и осей
- •11.1.3 Расчёт осей и валов на статистическую прочность Расчёт осей на изгиб
- •Расчёт вала на кручение
- •Расчёт вала на совместное действие изгиба и кручения
- •11.2 Подшипники скольжения
- •11.2.1 Критерии работоспособности подшипников скольжения
- •11.2.2 Расчёт подшипников скольжения в режиме полужидкостного трения
- •11.3 Подшипники качения
- •11.3.1 Практический расчёт (подбор) подшипников качения
- •11.4 Механические муфты
- •11.4.1 Общие сведения, назначение и классификация
- •11.4.2 Краткая характеристика муфт
- •Список рекомендуемой литературы
- •Часть 1. Теория механизмов и машин
- •1 Определения и классификации 5
- •2 Структурная формула механизма 6
- •3 Кинематика рычажных механизмов 16
- •4 Кинематика кулачковых механизмов 39
- •5 Кинематика зубчатых механизмов 45
- •10 Механические передачи 134
- •11 Детали и узлы, обслуживающие механические передачи 161
2.4 Вывод структурной формулы
Любой
механизм обладает
степенями свободы, содержит
подвижных звеньев и
активных связей во всех кинематических
парах, вместе взятых. В
общем случае
,
где
– число необходимых
связей, q
– число избыточных связей. В
обсуждаемом примере (см. рис. 2.4, а)
,
,
,
,
.
После
удаления всех избыточных связей (см.
рис. 2.4, б)
не меняется.
Удаление каждой необходимой связи
увеличивает
на единицу (убедитесь в этом самостоятельно,
удалив на рис. 2.4, б
связь в точке
или
).
После удаления всех необходимых связей,
количество которых
,
число степеней свободы возрастёт на
единиц и станет равным
.
Кроме
того, все n
подвижных звеньев механизма станут
свободными и будут обладать в совокупности
степенями свободы относительно стойки
– по 6 на каждое из
звеньев
(см. рис. 2.2). Поскольку в обоих случаях
речь идёт о числе степеней свободы одной
и той же системы звеньев, то
.
(2.1)
Полученное уравнение называется структурной формулой механизма. Из формулы следует, что число избыточных связей
.
(2.2)
В примере
(см. рис. 2.4, а)
,
что совпадает с числом избыточных
связей, найденным анализом каждой связи
в отдельности.
2.5 Устранение избыточных связей
Если определение числа
избыточных связей – это анализ, то их
устранение – это синтез. Исходя из
главного условия синтеза – отсутствия
избыточных связей, в структурную формулу
подставляют
.
Затем задаются величинами
и
.
Для упрощения задачи их принимают
сначала такими, как в исходном механизме.
Через принятые значения находят
необходимое число связей
Найденное раскладывают всеми возможными отличающимися по составу способами по кинематическим парам синтезируемого механизма. При раскладке учитывают, что в каждой кинематической паре содержится не более пяти активных связей (см. табл. 2.1).
Выбрав один из вариантов раскладки связей, строят механизм. Подставляя пары, следят за тем, чтобы механизм получился кинематически эквивалентным исходному и имел во всех своих положениях (фазах движения) заданное число степеней свободы.
Подобрать и сориентировать пары с выбранными числами связей помогает воображаемая неточность изготовления или деформация стойки: пары ориентируют так, чтобы все вместе они допускали любые её деформации (как в примере на рис. 2.5, б).
Пример.
Требуется
построить все
структурные варианты кривошипно-ползунного
механизма (рис. 2.4, а),
удовлетворяющего условиям:
,
,
.
При этих условиях необходимое число
связей
.
Число кинематических пар – 4. Семнадцать связей раскладываются по четырём кинематическим парам в следующих трёх вариантах:
5+5+5+2; 5+5+4+3; 5+4+4+4.
Все другие варианты являются перестановками найденных и реализуются в процессе построения схемы. Согласно первому варианту, одна из пар должна быть двусвязной. Двусвязными являются пары «цилиндр – плоскость» и «шар – цилиндр» (см. табл. 2.1).
Подстановка пары «цилиндр – плоскость» взамен какой-либо вращательной пары, например 1-2, возможна в нескольких вариантах, отличающихся ориентацией пары. Два из этих вариантов приведены на рис. 2.6, а, б.
Полученные механизмы не удовлетворяют условиям синтеза, т. к. появляется вторая степень свободы – z3 и 23 соответственно. Подстановка пары «цилиндр – плоскость» взамен поступательной пары 3-4 возможна также в нескольких вариантах, два из них приведены на рис. 2.6, в, г.
В варианте в) цепь 0...3 не позволяет звену 3 последовать за направляющей 4, если по каким-то причинам она будет развёрнута вокруг оси, параллельной z. В то же время эта цепь допускает вращение звена 3 вокруг оси y (см. угол 3). Это вращение означает появление второй степени свободы, что противоречит условиям синтеза.
Рис. 2.6. Варианты подстановки пары «цилиндр – плоскость»
Вариант г) допускает любые перемещения направляющей 4 и, значит, избыточных связей нет. Кроме того, исчезла вторая степень свободы. Таким образом, все условия синтеза удовлетворены. Приведённых примеров достаточно, чтобы оценить возможности пары «цилиндр – плоскость». Подстановка пары «шар – цилиндр» возможна также в нескольких вариантах. Один из правильных вариантов показан на рис. 2.5, б.
Возможности алгебраического синтеза значительно расширяются, если допустить другое число степеней свободы – за счёт местных подвижностей, а также другое число звеньев – за счёт их разрезания с последующим подвижным соединением частей.
