Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Прикл мех 2 Ермак.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
60.69 Mб
Скачать

6 Силовой расчёт механизмов

6.1 Постановка задачи

В данном курсе силовой расчёт или, иначе, силовой анализ рассматривается только для плоских механизмов. Предполагается, что высшие пары заменены низшими и, следовательно, механизм приведён к рычажному виду. Расчёт ведётся по двумерной модели. Как правило, такая модель не содержит избыточных связей и механизм оказывается статически определимым. Предполагается также, что трение пренебрежимо мало.

Расчёт состоит в определении реакций связей в кинематических парах механизма по заданному положению и движению (скорости и ускорению) одного из звеньев этого механизма.

При заданном движении величину одной из внешних сил не задают. Её определяют исходя из того, чтобы она в совокупности с другими внешними силами обеспечивала заданное движение. Для краткости незаданную внешнюю силу называют уравновешивающей. Она действительно является таковой по отношению к внешним силам и силам инерции.

Реакции связей существенно зависят от сил инерции. В свою очередь силы инерции зависят от ускорений, поэтому силовому расчёту предшествует кинематический анализ. Конечной целью этого анализа является определение ускорений центров масс и угловых ускорений звеньев. Ниже предполагается, что ускорения определены.

6.2 Силы инерции

Силы инерции каждого звена представляют сначала в виде главного вектора и главного момента . Их модули определяют по формулам

; ,

где m – масса звена; – ускорение центра масс; – момент инерции звена относительно центра масс; – угловое ускорение звена. Главный вектор прикладывают к центру масс звена и направляют противоположно ускорению , главный момент изображают круговой стрелкой, направленной противоположно угловому ускорению .

Чтобы унифицировать силы, а именно свести их только к векторам, избавляются от главного момента . При это делают параллельным смещением вектора на расстояние . Направление смещения выбирают так, чтобы после смещения вектор создавал относительно центра масс момент, совпадающий по направлению с удаляемым моментом. При главный момент представляют в виде пары сил , с произвольным плечом . При этом .

6.3 Методы силового расчёта

Первый метод – позвенный, состоит в том, что механизм разбивают на отдельные звенья. К каждому звену прикладывают три категории сил: внешние (для механизма) силы, реакции связей, силы инерции. Внешние силы делятся на: движущие – в форме вектора или момента ; силы полезного сопротивления, тоже в виде вектора или момента ; силы тяжести – (рис. 6.1, а). Цифровой индекс в обозначении силы тяжести или силы инерции указывает номер звена приложения этой силы.

Реакции связей представляют двумя взаимно перпендикулярными составляющими , (рис. 6.1, б).

Рис. 6.1. Силы, действующие на звенья механизма: а – внешние силы и силы инерции; б – реакции связей в паре i-j; силы звена 5

На рис. 6.1, в показаны все три категории сил, приложенных к звену 5. Неизвестные силы выделены пунктиром. Силы инерции представлены в безмоментной форме. Согласно принципу Даламбера, приложение сил инерции ко всем внешним силам и реакциям связей приводит любое звено в состояние равновесия. Совместно решая систему уравнений равновесия всех звеньев, находят реакции и незаданную внешнюю силу. Совместное решение целесообразно только при машинном решении задачи.

Второй метод – погруппный, применяется при ручном графоаналитическом решении задачи. Он состоит в том, что реакции определяют не для всех звеньев сразу, а лишь для отдельных групп этих звеньев. В выделенных группах число реакций должно быть равно числу уравнений равновесия.

Число реакций равно числу активных связей s, содержащихся во всех парах группы. Для произвольной системы сил число уравнений равновесия равно 3п, где п – число звеньев группы. В итоге искомые группы должны удовлетворять условию .

Такому условию удовлетворяют, как известно, группы Ассура (см. пункт 3.1.1). При разложении на группы Ассура за начальное принимают звено 1 (см. рис. 6.1, а), к которому приложена незаданная внешняя сила . При этом порядок образования механизма будет следующим: 0, 1 + 2, 3 + 4, 5. Силовой расчёт ведут в обратном порядке, т. е. 4, 5; 2, 3; 0, 1. Такой порядок обусловлен тем, что на начало расчёта условие соблюдается только в группе 4, 5, наиболее удалённой от звена приложения незаданной внешней силы.