Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Прикл мех 2 Ермак.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
60.69 Mб
Скачать

5.5.2 Изготовление зацепления

Зацепление изготовляют преимущественно методом обката. Обкат происходит по поверхностям A1, A2, A3 (рис. 5.17), образованным от центроид Ц1, Ц2, Ц3, известных по плоскому зацеплению.

Рис. 5.17. Образование косозубого зацепления методом обката

Линия касания поверхностей обката является мгновенной осью вращения во взаимном движении этих поверхностей, поэтому их называют аксоидами.

Косозубое зацепление образуют тем же производящим контуром 1, что и в случае плоского зацепления. Контур совершает два движения – вместе с аксоидом A3 и относительно этого аксоида. Второе движение контур совершает перпендикулярно самому себе. В результате второго движения в пространстве аксоида A3 создаётся гребенчатый след, называемый производящей поверхностью. Двигаясь с аксоидом A3, производящая поверхность формирует косозубое зацепление.

Параметры косозубого колеса. При расчёте этих параметров различают два сечения производящей поверхности. Первое – перпендикулярно граням этой поверхности, второе – перпендикулярно оси колеса. Первое сечение совпадает с производящим контуром 1 и называется нормальным, второе называется торцевым и образует производящий контур 2, отличающийся от контура 1 шагом и углом профиля. Всем величинам, относящимся к нормальному сечению, присваивают индекс n, а относящимся к торцевому сечению – индекс t. Параметры нормального сечения известны по плоскому зацеплению. Найдем параметры торцевого сечения.

В треугольнике угол при точке – прямой, угол при точке равен , сторона есть шаг в нормальном сечении, – шаг в торцевом сечении. Из треугольника следует: . Поделив и на число , получают так называемый торцевой и нормальный модули. Нормальный модуль – это модуль контура 1. Модули связаны соотношением

.

Угол профиля в торцевом сечении находят по формуле

.

С введением торцевого сечения производящей поверхности задачу определения параметров косозубого колеса в его торцевом сечении решают так же, как плоского колеса. Так, радиусы окружностей, выводимых из станочного зацепления, определяют теперь по формулам:

; ; .

5.5.3 Коэффициент перекрытия косозубой передачи.

Зубья входят в зацепление в точке (рис. 5.18), а выходят в точке  . Фигура называется полем зацепления. За время зацепления точки основной окружности проходят путь, равный отрезку . При прочих равных условиях в прямозубом зацеплении этот путь был бы равен отрезку , что заметно меньше.

Коэффициент перекрытия прямозубого и косозубого зацеплений равен отношению отрезков , к шагу соответствующего колеса по нормали к профилям зубьев в их торцевых сечениях. Шаги отличаются не столь значительно, как и , поэтому в косозубом зацеплении коэффициент перекрытия больше, чем в прямозубом.

Контактная линия косых зубьев начинается с точки и нарастает постепенно. Нарастание заканчивается в точке . От до длина линии контакта сокращается до точки. Плавное нарастание и убывание длины контактной линии влечёт за собой плавное изменение нагрузки на зуб. Это, в свою очередь, уменьшает шум при работе передачи.