- •Часть I. Теория механизмов и машин
- •1 Определения и классификации
- •2 Структурная формула механизма
- •2.1 Число степеней свободы
- •2.2 Связи кинематических пар
- •2.3 Избыточные связи механизма
- •2.4 Вывод структурной формулы
- •2.5 Устранение избыточных связей
- •2.6 Двумерные модели механизма
- •3 Кинематика рычажных механизмов
- •3.1 Определение положений
- •3.1.1 Группы Ассура
- •3.1.2 Замена высших пар
- •3.2 Планы скоростей и ускорений
- •3.2.1 Группа Ассура с вращательными парами
- •3.2.2 Группа Ассура с внешней поступательной парой
- •3.3 Метод кинематических диаграмм
- •3.3.1 Построение диаграмм
- •3.3.2 Сущность производных функции положения
- •3.4 Метод векторных контуров
- •3.5 Простейшие задачи синтеза
- •3.5.1 Синтез по крайним положениям коромысла
- •3.5.2 Синтез по положениям шатуна
- •3.5.3 Синтез по заданной шатунной кривой
- •4 Кинематика кулачковых механизмов
- •4.1 Схемы и определения
- •4.2 Анализ механизма первой схемы
- •4.2.1 Кинематические диаграммы
- •4.2.2 Угол давления
- •4.3 Синтез механизма первой схемы
- •4.3.1 Начальный радиус и эксцентриситет
- •4.3.2 Построение профиля кулачка
- •5 Кинематика зубчатых механизмов
- •5.1 Цилиндрические прямозубые передачи
- •5.1.1 Среднее передаточное отношение
- •5.1.2 Мгновенное передаточное отношение
- •5.1.3 Центроиды зацепления
- •5.2 Эвольвентное зацепление
- •5.2.1 Принцип образования зацепления
- •5.2.2 Эвольвента, её свойства и уравнения
- •5.2.3 Элементы колёсного зацепления
- •5.2.4 Элементы реечного зацепления
- •5.3 Профилирование зубьев
- •5.3.1 Метод обката
- •5.3.2 Коррекция эвольвентного зацепления
- •5.3.3 Исходный производящий контур
- •5.4 Параметры колеса и зацепления
- •5.4.1 Станочное зацепление
- •5.4.2 Рабочее зацепление
- •5.4.3 Блокирующие контуры
- •5.5 Цилиндрические косозубые передачи
- •5.5.1 Образование косозубого зацепления
- •5.5.2 Изготовление зацепления
- •5.5.3 Коэффициент перекрытия косозубой передачи.
- •5.6 Конические передачи
- •5.6.1 Прямозубое эвольвентное зацепление
- •5.6.2 Изготовление зацепления
- •5.6.3 Червячное зацепление
- •5.7 Сложные зубчатые передачи
- •5.7.1 Передачи с неподвижными осями колёс
- •5.7.2 Планетарные передачи
- •5.7.3 Синтез планетарной передачи
- •5.7.4 Волновая передача
- •6 Силовой расчёт механизмов
- •6.1 Постановка задачи
- •6.2 Силы инерции
- •6.3 Методы силового расчёта
- •6.4 Пример погруппного силового расчёта
- •6.4.1 Расчёт группы 4, 5
- •6.4.2 Расчёт группы 2, 3
- •6.4.3 Расчёт начального механизма
- •6.4.4 Теорема Жуковского
- •6.4.5 Проверка силового расчёта
- •7 Динамика машин
- •7.1 Приведение сил и масс
- •7.2 Определение скорости звена приведения
- •7.2.1 Скорость из уравнения кинетической энергии
- •7.2.2 Скорость по диаграмме ф. Виттенбауэра
- •7.2.3 Дифференциальное уравнение движения машины
- •7.3 Подбор маховика
- •7.4 Уравновешивание вращающихся звеньев
- •7.5 Уравновешивание механизмов
- •Часть II. Детали машин и основы конструирования
- •8 Основы проектирования деталей машин
- •8.1 Составные части машины
- •8.2 Основные критерии работоспособности и расчёта деталей машин
- •9 Соединения деталей машин
- •9.1 Сварные соединения
- •9.1.1 Общая характеристика
- •9.1.2 Виды сварных соединений и типы сварных швов
- •9.1.3 Расчёт сварных швов.
- •Расчёт и конструирование стыковых сварных швов
- •Расчёт и конструирование угловых сварных швов
- •9.2 Шпоночные соединения
- •9.2.1 Общие сведения
- •9.2.2 Расчёт и конструирование
- •Соединения призматическими шпонками
- •Соединения клиновыми шпонками
- •9.3 Шлицевые (зубчатые) соединения
- •9.3.1 Общая характеристика
- •9.3.2 Расчёт и конструирование
- •9.4 Резьбовые соединения
- •9.4.1 Общие сведения
- •9.4.2 Расчёт резьбовых соединений при статических нагрузках
- •10 Механические передачи
- •10.1 Общие сведения. Характеристики передач
- •10.2 Зубчатые передачи
- •10.2.1 Общие сведения и классификация
- •10.2.2 Краткая характеристика и расчёт параметров зубчатых и червячных передач
- •Цилиндрическая прямозубая передача
- •Цилиндрическая косозубая передача.
- •Коническая зубчатая передача
- •Червячные передачи
- •10.2.3 Условия работы зуба в зацеплении. Понятие о контактных и изгибных напряжениях
- •Червячная передача
- •10.2.5 Расчёт прочности зубчатых передач
- •Расчёт на контактную прочность
- •Расчёт на прочность при изгибе
- •10.2.6 Смазка зубчатых передач
- •10.3 Ремённые и цепные передачи
- •10.3.1 Ремённые передачи Общие сведения
- •Составные части ремённой передачи
- •Механика работы и основы расчёта ремённой передачи
- •10.3.2 Цепные передачи.
- •Элементы цепной передачи (звёздочки и цепи)
- •Механика работы и основы расчёта цепной передачи
- •11 Детали и узлы, обслуживающие механические передачи
- •11.1 Валы и оси
- •11.1.1 Общие сведения и классификация
- •11.1.2 Критерии работоспособности и расчёта валов и осей
- •11.1.3 Расчёт осей и валов на статистическую прочность Расчёт осей на изгиб
- •Расчёт вала на кручение
- •Расчёт вала на совместное действие изгиба и кручения
- •11.2 Подшипники скольжения
- •11.2.1 Критерии работоспособности подшипников скольжения
- •11.2.2 Расчёт подшипников скольжения в режиме полужидкостного трения
- •11.3 Подшипники качения
- •11.3.1 Практический расчёт (подбор) подшипников качения
- •11.4 Механические муфты
- •11.4.1 Общие сведения, назначение и классификация
- •11.4.2 Краткая характеристика муфт
- •Список рекомендуемой литературы
- •Часть 1. Теория механизмов и машин
- •1 Определения и классификации 5
- •2 Структурная формула механизма 6
- •3 Кинематика рычажных механизмов 16
- •4 Кинематика кулачковых механизмов 39
- •5 Кинематика зубчатых механизмов 45
- •10 Механические передачи 134
- •11 Детали и узлы, обслуживающие механические передачи 161
5.1.1 Среднее передаточное отношение
Анализируемый механизм
преобразует вращательное движение со
скоростью
во
вращательное со скоростью
.
Пусть число зубьев
колеса 2 в два раза больше числа
зубьев
колеса 1. Тогда за один оборот большего
колеса меньшее сделает два оборота. Во
столько же будут отличаться и скорости
колёс. Распространяя этот вывод на
произвольное число зубьев, получают:
.
(5.1)
Согласно формуле, скорости
колёс обратно пропорциональны числам
их зубьев. При
выводе формулы молчаливо предполагалось,
что скорости колёс постоянны. Это
возможно лишь при специально подобранных
профилях зубьев. При случайных профилях
и постоянной скорости одного из колёс
скорость другого будет, скорее всего,
переменной. Точно так же будет вести
себя и передаточное отношение, в
частности,
будет колебаться около значения
.
Следовательно, формула (5.1) выражает
лишь среднее
передаточное отношение.
5.1.2 Мгновенное передаточное отношение
Переставим механизм на колесо
1 (рис. 5.1, б) и найдём мгновенный
центр вращения колеса 2. Мгновенный
центр должен находиться на пересечении
перпендикуляров к скоростям каких-нибудь
двух точек колеса 2.
Очевидно направление скорости
точки
,
оно перпендикулярно АВ.
Не столь очевидно, но всё же определимо
направление скорости
точки
.
Рис. 5.1. Определение мгновенного передаточного отношения
Как бы
ни двигалась точка
,
её траектория не пересекает профиль
зуба колеса 1.
Из непересечения следует касание. Через
точку касания любого количества кривых
можно провести единственную касательную,
вдоль неё и проходит скорость
.
Искомый мгновенный центр вращения
находится на пересечении
перпендикуляров к скоростям
,
.
Этим центром является точка
.
Заметим попутно, что точка
,
совпадающая с
,
называется мгновенным центром скоростей
колеса 2
относительно 1.
По свойству мгновенного
центра скоростей
,
т. е. скорость точки
относительно колеса 1 равна нулю.
Отсюда
(см. рис. 5.1, а).
Выражая скорости точек
,
через скорости своих звеньев, получают:
.
Отсюда передаточное отношение
.
(5.2)
В отличие от среднего, это точное передаточное отношение. Оно называется мгновенным, относящимся только к данной фазе зацепления. Профили зубьев должны быть подобраны так, чтобы мгновенное передаточное отношение в любой фазе зацепления было равно среднему, определяемому числами зубьев.
В плоском зацеплении мгновенный центр вращения и мгновенный центр скоростей одного колеса относительно другого называется полюсом зацепления. Если говорить об абсолютных движениях, т. е. о движениях относительно стойки, то полюс зацепления – это точка, в которой скорости зубчатых колёс равны друг другу: .
Из решения задачи о мгновенном передаточном отношении вытекает основная теорема плоского зацепления:
«Нормаль к профилям зубьев, проведённая через точку их касания, пересекает линию центров в полюсе зацепления и делит эту линию на части, обратно пропорциональные скоростям колёс».
5.1.3 Центроиды зацепления
Центроиды состоят из точек , построенных во всех возможных фазах движения механизма. Периодически останавливая работающее зацепление и протыкая плоскости обоих колёс в полюсе зацепления, получают сразу две центроиды Ц1, Ц2 (см. рис. 5.1, а). Если передаточное отношение постоянно, то центроиды получаются круглыми, именно это подразумевается на рисунке.
Центроиды обладают двумя важными свойствами: они всегда касаются друг друга и перекатываются друг по другу без скольжения. Первое свойство вытекает из образования центроид проколами сразу двух плоскостей, второе следует из равенства скоростей в точке касания. Радиусы круглых центроид выводят из системы
(5.3)
Первое уравнение системы вытекает из свойства центроид всегда касаться друг друга, второе получается из уравнений (5.1), (5.2).
Первое научно обоснованное зацепление, обладающее постоянным передаточным отношением в любой фазе зацепления, было циклоидальным с профилями зубьев, очерченными по циклоидам. Циклоидой называется кривая, описываемая точкой окружности при перекатывании её по другой окружности или прямой. Своё первое применение циклоидальное зацепление нашло в часовых механизмах и сохранилось там до сих пор. В других механизмах циклоидальное зацепление было вытеснено эвольвентным, предложенным математиком, швейцарцем по происхождению, Леонардом Эйлером в 1750 году. Это примерно на сто лет позже изобретения циклоидального зацепления.
