- •Синергетика Хакена
- •Что такое синергетика?
- •Ячейки Бенара
- •Структура и хаос
- •Из чего состоит синергетика
- •Кинетика существенно неравновесных состояний
- •Неравновесная термодинамика открытых систем
- •Открытые системы.Неравновесная термодинамика
- •Диссипативные системы (и.Пригожин)
- •Диссипативные структуры
- •Теория катастроф
- •Кинетика существенно неравновесных состояний
- •Неравновесная термодинамика открытых систем
- •Открытые системы.Неравновесная термодинамика
- •Диссипативные системы (и.Пригожин)
- •Диссипативные структуры
- •Теория катастроф
- •О.В.Митина, в.Ф.Петренко. Синергетическая модель динамики политического сознания
- •Синергетика и кибернетика
- •Литература
- •Синергетика и принцип целостности
- •Предметный уровень описания пространственно-временной самоорганизации и принцип целостности
- •Литература
- •Искушение синергетикой: что делать?
- •Самоорганизация в физико-химических системах: рождение сложного
- •1. Почему синергетика имеет особое значение для образования?
- •Синтетическая функция синергетики
- •Синергетика как стратегия исследования.
- •Синергетика и исследование будущего.
- •Синергетика как метод и содержание образования.
- •2. Синергетические методы образования
- •3. Возврат к визуальному мышлению
- •4. Синергетика как способ интеграции естественнонаучного и гуманитарного образования
- •5. Обучающие компьютерные программы по синергетике
- •Глава 1. Физические системы
- •3. Кузнецов г.А., Суриков в.В. Концепция глобального развития: термодинамические аспекты. Вопросы философии. 1981, №12, с. 95-102. Синергетика и биология
- •Синергетика в биологии
- •Синергетика и детерминизм а. Родин 1. Необходимое и возможное
- •2. Возможное и действительное
- •3. Детерминированное и случайное
- •5. Синергетика
- •1. Междисциплинарный синтез знания
- •2. Некоторые парадоксальные следствия синергетики
- •6. Синергетика как позитивная эвристика: как далеко мы можем идти?
- •Заключение
- •Литература и полезные ссылки
http://www.uni-dubna.ru/kafedr/mazny/sinergy/3.htm
СИНЕРГЕТИКА Некоммерческий методический сайт "СИНЕРГЕТИКА" создан бакалавром Международного Университета природы, общества и человека "Дубна" А.С. Власовой под руководством доцента Г.Л.Мазного.
Сайт предназначен для ознакомления студентов университета и всех желающих с основными положениями и достижениями синергетики и для стимулирования научных и методических разработок.
В сайте цитируется имеющаяся в свободном доступе литература и источники в Интернет (см.ссылки)
|
Причины возникновения синергетики |
Синергетика Хакена |
Что такое синергетика? |
Из чего состоит синергетика |
Кинетика существенно неравновесных состояний |
Неравновесная термодинамика открытых систем |
Диссипативные системы |
Теория катастроф |
Применения синергетики в других областях(статьи) |
Заключение |
Литература и полезные ссылки |
|
|
Введение
Причины
возникновения синергетики,
ее
отличия от представлений,
выработанных
раньше
Сравним системы, существующие в природе, с теми,которые созданы человеком.
Для существующих в природе систем характерна устойчивость относительно внешних воздействий, самообновляемость, возможность к самоусложнению, росту, развитию, согласованность всех составных частей.
Для созданных человеком систем характерны — резкие ухудшения функционирования даже при сравнительно небольшом изменении внешних воздействий или ошибках в управлении.
Вывод: нужно позаимствовать опыт построения организации, накопленный природой, и использовать его в нашей деятельности. Отсюда вытекает одна из задач синергетики — выяснение законов построения организации, возникновения упорядоченности. Здесь акцент делается на принципах построения организации, ее возникновении, развитии и самоусложнении. При решении самых разных задач от физики и химии до экономики и экологии создание и сохранение организации, формирование упорядоченности является либо целью деятельности, либо ее важным этапом. Приведем два примера: 1. Задачи, связанные с управляемым термоядерным синтезом. В большинстве проектов самый важный момент — создание необходимой пространственной или пространственно-временной упорядоченности. 2. Формирование научных коллективов, где активная творческая работа большинства сотрудников должна сочетаться с возможностями совместно решать крупные задачи. Такой коллектив должен быть устойчив и быстро реагировать на все новое. Какова оптимальная организация, позволяющая добиваться этого? Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем — энергетических, экологических, многих других, требующих привлечения огромных ресурсов. Здесь нет возможности искать ответ методом проб и ошибок, а "навязать" системе необходимое поведение очень трудно. Гораздо разумнее действовать, опираясь на знание внутренних свойств системы, законов ее развития. В такой ситуации значение законов самоорганизации, формирования упорядоченности в физических, биологических и других системах трудно переоценить. Другая причина, обусловившая создание синергетики, — необходимость при решении ряда задач науки и техники анализировать сложные процессы различной природы, используя при этом новые математические методы. Классическая математическая физика (т. е. наука об исследовании математических моделей физики) имела с линейными уравнениями. Формально это уравнения, в которые неизвестные входят только в первой степени. Реально они описывают процессы, идущие одинаково при разных внешних воздействиях. С увеличением интенсивности воздействий изменения остаются количественными, новых качеств не возникает. Область применения линейных уравнений необычайно широка. Она охватывает классическую и квантовую механику, электродинамику и теорию волн. Методы их решения, разрабатывавшиеся в течение столетий, обладают большой общностью и эффективностью. Однако ученым все чаще приходится иметь дело явлениями, где более интенсивные внешние воздействия приводят к качественно новому поведению системы. Здесь нужны нелинейные математические модели. Их анализ — дело гораздо более сложное, но при решении многих задач он необходим. Это приводит к формированию широкого фронта исследований нелинейных явлений, к попыткам создать общие подходы, применимые ко многим системам(к таким подходам относится и синергетика). Современная наука все чаще формулирует свои закономерности, обращаясь к более богатому и сложному миру нелинейных математических моделей.
Синергетика Хакена
Термин "синергетика" происходит от греческого "синергена" — содействие, сотрудничество, совместные действия. Предложенный Г. Хакеном, этот термин акцентирует внимание на согласованности взаимодействия частей при образовании структуры как единого целого. Большинство существующих ныне учебников, справочников и словарей обходят неологизм Хакена молчанием. Заглянув в энциклопедии последних изданий, мы с вероятностью, близкой к единице, обнаружим в них не синергетику, а "синергизм" (1.Совместное и однородное функционирование органов (например, мышц) и систем; 2. Комбинированное действие лекарственных веществ на организм, при котором суммарный эффект превышает действие, оказываемое каждым компонентом в отдельности). Фигура умолчания объясняется не только новизной термина "синергетика", но и тем, что X - наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы, еще далека от завершения и единой общепринятой терминологии (в том числе и единого названия всей теории) пока не существует. Синергетику Хакена легко описать: все, что о ней известно, содержится в множестве
Synergetics={X1, X2, ... , Xn}
где Xi — i-й том выпускаемой издательством Шпрингера серии по синергетике [2-8]. Множество это конечно, но число элементов в нем быстро возрастает[16]. Разработанная почти полвека назад, эта программа становится особенно актуальной в наши дни существенной "делинеаризации" всей науки. Без наглядных и емких физических образов, адекватных используемому аппарату, немыслимо построение общей теории структур, теории существенно нелинейной.
Что такое синергетика?
На этот вопрос можно дать несколько ответов.
Во-первых, буквальный.Речь идет о явлениях, которые возникают от совместного действия нескольких разных факторов, в то время как каждый фактор в отдельности к этому явлению не приводит.
Во-вторых, синергетику часто определяют как науку о самоорганизации. Последнее означает самопроизвольное усложнение формы, или в более общем случае структуры системы при медленном и плавном изменении ее параметров (ячейки Бенара).
Ячейки Бенара
Явление состоит в следующем. В плоском сосуде с жидкостью, равномерно подогреваемом снизу, самопроизвольно образуются конвективные вихревые течения, если мощность подогрева превосходит некое критическое значение. Вихри образуют регулярную структуру. Эта структура образуется в результате конкуренции (а также совместного действия) нескольких процессов: теплопроводности, гидродинамической конвекции и теплопередачи. Если мощность подогрева ниже критической, то никаких вихрей не образуется, жидкость остается однородной. Неоднородная регулярная структура возникает сама при увеличении параметра — температуры подогрева; в этом и заключается суть явления. Можно привести много примеров подобного рода: образование перистых облаков, геологических структур и т. п. Усложнение формы зародыша живого организма при его развитии (т. е. морфогенез) относится к тому же классу явлений.
Сейчас также самопроизвольно возникающие образования объединяются под общим названием — диссипативные структуры (термин предложен И.Р. Пригожиным).
Примером самоорганизации во времени является самопроизвольное возникновение автоколебаний. Обыкновенные часы, как известно, стоят, если напряжение пружины ниже критического, но начинают работать в периодическом режиме с определенным периодом, если напряжение выше критического. Примеров таких автоколебательных процессов великое множество. В физике и химии это периодические реакции. В живой природе к таковым относятся все биологические ритмы. Важный класс явлений пространственновременной самоорганизации — так называемые автоволны (термин предложен Р. В. Хохловым). Наиболее известный и в то же время яркий пример — распространение импульса по нервному волокну. В двухмерной и трехмерной средах (например, в сердечной мышце) это же явление выглядит еще ярче и богаче: тут могут образовываться спиральные волны, тороидальные структуры, концентрические волны и т. п. Здесь, как и в предыдущих случаях, явление исчезает (или возникает) при медленном изменении параметров активной среды. Особый класс явлений самоорганизации — самопроизвольное возникновение хаоса, а из хаоса — регулярной структуры. Это мы обсудим позже и более детально в связи с генерацией информации.
