- •Содержание
- •1 Металловедение и сварочные процессы
- •1.1 Общие сведения
- •1.2 Особенности нагрева металла при электрической
- •2 Основные методы исследования металлов
- •2.1 Структурные методы исследований
- •2.2 Методы исследования физических свойств
- •2.3 Механические методы испытаний
- •3 Физическое строение металлов и его значение для сварки
- •3.1 Роль атомного строения металлов
- •3.2 Роль кристаллического строения металлов
- •4 Плавление и кристаллизация сплавов и металла сварочной ванны
- •4.1 Плавление металлов, сварочная ванна
- •4.2 Закономерности кристаллизации сварного шва
- •4.3 Деформации и внутренние напряжения
- •4.4 Превращения в твердом состоянии.
- •5 Диаграммы состояния сплавов и их значение при кристаллизации металла сварных соединений
- •5.1 Вторичные превращения в сплавах и их роль
- •5.2 Распад твердого раствора
- •5.3 Диаграммы состояния тройных систем
- •6 Железо и его сплавы
- •6.1 Свойства железа и углерода как компонентов железоуглеродистых сплавов
- •6.2 Диаграмма состояния «железо – цементит»
- •6.3 Обозначение критических точек сталей
- •7 Теоретические основы термообработки
- •7.1 Сущность и технология термообработки
- •7.2 Превращения в сталях при нагреве
- •7.3 Превращения в сталях при охлаждении
- •7.4 Превращения аустенита при непрерывном охлаждении.
- •7.5 Превращение мартенсита и остаточного аустенита
- •8 Структурные и фазовые превращения в сталях при сварке
- •8.1 Фазовые превращения в стали при нагреве в процессе сварки
- •8.2 Кинетика образования и гомогенизация аустенита
- •8.3 Фазовые превращения при охлаждении
- •8.4 Выделение избыточного феррита и перлитные
- •8.5 Особенности мартенситного превращения
- •8.6 Промежуточные (бейнитные) превращения
- •8.7 Влияние длительности пребывания
- •8.8 Влияние изотермической выдержки на стадии
- •8.9 Влияние термоциклирования на стадии охлаждения
- •9 Влияние легирующих элементов на процессы, протекающие в сталях при сварке
- •10 Технология термообработки. Общие положения
- •10.1 Отжиг и нормализация
- •10.2 Закалка стали
- •10.3 Закаливаемость и прокаливаемость
- •10.4 Способы закалки
- •10.5 Отпуск закаленной стали
- •11 Свариваемость металлов и сплавов
- •11.1 Показатели свариваемости и их оценка
- •11.2 Стали для сварных конструкций
- •11.3 Влияние различных компонентов стали на ее свойства
- •12 Термическая обработка сварных соединений
- •12.1 Общие положения термической обработки
- •12.2 Остаточные напряжения в зоне сварного соединения
- •12.3 Дефекты сварного шва, зависящие от структуры
- •12.4 Термическая обработка сварных соединений
- •12.5 Термическая обработка сварных соединений
- •12.6 Термическая обработка сварных соединений
- •12.7 Термическая обработка сварных соединений
- •12.8 Термическая обработка сварных соединений
- •13 Наплавка и наплавочные материалы. Общие сведения
- •13.1 Износостойкий наплавленный металл.
- •13.2 Роль легирования износостойкого наплавленного металла
- •13.3 Металловедение сварки чугуна
- •Список рекомендованной литературы
- •197/2007 Підп. До друку Формат 60х84/16.
- •84313, М. Краматорськ, вул. Шкадінова, 72
8.1 Фазовые превращения в стали при нагреве в процессе сварки
Образование аустенита при нагреве происходит в две стадии. На первой стадии реализуется сдвиговой механизм α → γ-перестройки кристаллической решетки. При этом возникают области метастабильного аустенита с пониженной концентрацией углерода по сравнению с той, которая следует из диаграммы состояния при данной температуре. На второй стадии превращения растворяются карбиды, и аустенит обогащается углеродом в результате процесса диффузии, приобретая устойчивость к росту при температуре, превышающей температуру критической точки Ас1.
Участками преимущественного образования аустенита наряду с поверхностями раздела ферритной и карбидной фаз являются также границы ферритных зерен и субзерен, границы перлитных колоний. При этом имеет значение влияние устойчивых сегрегаций атомов углерода как основного элемента, хотя при этом следует иметь в виду, что при температуре нагрева выше 500 0С эффект сегрегации значительно уменьшается.
Кроме поверхностей раздела фаз, существенную роль играют области структур с повышенным уровнем свободной энергии – скопления дислокаций, участки локального искажения кристаллической решетки в результате внедрения атомов.
С повышением температуры превращения при высоких скоростях нагрева (при перенагреве) свободная энергия системы возрастает настолько, что число центров зарождения γ-фазы увеличивается за счет их образования в областях структуры с меньшей плотностью дислокаций. Свободная энергия, существующая вокруг этих зон, при превращении передается зародышу новой фазы, понижая энергию его образования. Отмеченное подтверждается тем обстоятельством, что при быстром нагреве стали аустенит образуется в первую очередь вокруг деформированных участков α-фазы, термодинамический потенциал которых выше, чем у недеформированной α- фазы, из-за наличия большого количества дефектов кристаллического строения и низкой устойчивости с термодинамической точки зрения. В то же время при медленном нагреве (со скоростью до 1 °С/мин) в результате исчезновения искажений решетки в образцах с различной исходной структурой образуется примерно одинаковое количество аустенита, так как при этом участками зарождения γ-фазы становятся поверхности раздела фаз.
Легирующие элементы резко снижают интенсивность образования γ- фазы и существенно повышают энергию активации диффузии углерода в аустените. Граница раздела α- и γ-фаз движется со скоростью, пропорциональной изменению свободной энергии системы. Легирующие элементы уменьшают скорость роста зерна аустенита. Полагают, что скорость α → γ-превращения определяется скоростью зарождения новой фазы, а рост устойчивых зародышей – скоростью диффузии углерода. Так, скорость движения границы аустенитного зерна при 740 °С в стали с 0,56 % С составляет 0,1 мкм/с.
Для закаленного состояния, характеризующегося структурой с повышенной плотностью дислокаций, скорость зарождения центров кристаллизации оказалась в десятки раз больше данной скорости для отожженного состояния, а скорость роста – в 3 раза меньшей.
При дуговой сварке под флюсом, например, интенсивность нагрева металла в ЗТВ сварных соединений достигает сотен градусов в секунду, т.е. значительно выше, чем при обычных режимах нагрева при термической обработке. В связи с этим необходимо проводить соответствующие исследования с целью определения кинетических параметров в условиях быстро изменяющихся температур, характерных для соответствующих процессов сварки. Отмеченное особенно важно для сталей с пониженным содержанием углерода (например, бесперлитных) и низколегированных сталей, легированных Mo и Cr.
Наиболее полно к настоящему времени исследовано состояние фаз в участках IV – VI и недостаточно – в участках II и III (см. рис. 31, в). Это объясняется в первую очередь трудностями, возникающими при анализе фазовых превращений в интервале tпл…1350 0С, т.к. в этом случае наряду с твердыми фазами присутствуют жидкие фазы.
