- •Содержание
- •1 Металловедение и сварочные процессы
- •1.1 Общие сведения
- •1.2 Особенности нагрева металла при электрической
- •2 Основные методы исследования металлов
- •2.1 Структурные методы исследований
- •2.2 Методы исследования физических свойств
- •2.3 Механические методы испытаний
- •3 Физическое строение металлов и его значение для сварки
- •3.1 Роль атомного строения металлов
- •3.2 Роль кристаллического строения металлов
- •4 Плавление и кристаллизация сплавов и металла сварочной ванны
- •4.1 Плавление металлов, сварочная ванна
- •4.2 Закономерности кристаллизации сварного шва
- •4.3 Деформации и внутренние напряжения
- •4.4 Превращения в твердом состоянии.
- •5 Диаграммы состояния сплавов и их значение при кристаллизации металла сварных соединений
- •5.1 Вторичные превращения в сплавах и их роль
- •5.2 Распад твердого раствора
- •5.3 Диаграммы состояния тройных систем
- •6 Железо и его сплавы
- •6.1 Свойства железа и углерода как компонентов железоуглеродистых сплавов
- •6.2 Диаграмма состояния «железо – цементит»
- •6.3 Обозначение критических точек сталей
- •7 Теоретические основы термообработки
- •7.1 Сущность и технология термообработки
- •7.2 Превращения в сталях при нагреве
- •7.3 Превращения в сталях при охлаждении
- •7.4 Превращения аустенита при непрерывном охлаждении.
- •7.5 Превращение мартенсита и остаточного аустенита
- •8 Структурные и фазовые превращения в сталях при сварке
- •8.1 Фазовые превращения в стали при нагреве в процессе сварки
- •8.2 Кинетика образования и гомогенизация аустенита
- •8.3 Фазовые превращения при охлаждении
- •8.4 Выделение избыточного феррита и перлитные
- •8.5 Особенности мартенситного превращения
- •8.6 Промежуточные (бейнитные) превращения
- •8.7 Влияние длительности пребывания
- •8.8 Влияние изотермической выдержки на стадии
- •8.9 Влияние термоциклирования на стадии охлаждения
- •9 Влияние легирующих элементов на процессы, протекающие в сталях при сварке
- •10 Технология термообработки. Общие положения
- •10.1 Отжиг и нормализация
- •10.2 Закалка стали
- •10.3 Закаливаемость и прокаливаемость
- •10.4 Способы закалки
- •10.5 Отпуск закаленной стали
- •11 Свариваемость металлов и сплавов
- •11.1 Показатели свариваемости и их оценка
- •11.2 Стали для сварных конструкций
- •11.3 Влияние различных компонентов стали на ее свойства
- •12 Термическая обработка сварных соединений
- •12.1 Общие положения термической обработки
- •12.2 Остаточные напряжения в зоне сварного соединения
- •12.3 Дефекты сварного шва, зависящие от структуры
- •12.4 Термическая обработка сварных соединений
- •12.5 Термическая обработка сварных соединений
- •12.6 Термическая обработка сварных соединений
- •12.7 Термическая обработка сварных соединений
- •12.8 Термическая обработка сварных соединений
- •13 Наплавка и наплавочные материалы. Общие сведения
- •13.1 Износостойкий наплавленный металл.
- •13.2 Роль легирования износостойкого наплавленного металла
- •13.3 Металловедение сварки чугуна
- •Список рекомендованной литературы
- •197/2007 Підп. До друку Формат 60х84/16.
- •84313, М. Краматорськ, вул. Шкадінова, 72
5.2 Распад твердого раствора
Следующими практически важными видами превращения в твердых сплавах являются полный и частичный распад твердого раствора.
При полном распаде твердого раствора образуются новые фазы, при частичном – выделяется из твердого раствора или растворяется в нем другая фаза. При этих превращениях меняется структура сплавов, а следовательно, и их свойства (см. рис. 20).
Отличительная особенность сварного соединения металлов с полиморфным превращением в твердом состоянии – получение вторичных мелких зерен в пределах крупных первичных кристаллитов, образовавшихся при переходе из жидкого состояния в твердое (при первичной кристаллизации). Прочность и вязкость благодаря этому улучшаются, происходит плавное изменение свойств металла шва в соответствии с характером образовавшихся фаз (см. рис. 20).
На практике часто приходится иметь дело со сваркой не только чистых металлов, но и сплавов. В сварных соединениях сплавов могут существовать твердые растворы нескольких компонентов, эвтектические или эвтектоидные смеси и химические соединения.
5.3 Диаграммы состояния тройных систем
В системе, состоящей из трех компонентов, в отличие от двухкомпонентных, прибавляется еще одна независимая переменная – концентрация третьего компонента, поэтому диаграмма состояния должна строиться в трех координатах, т.е. в пространстве. Здесь обычно значения процентных содержаний (концентрации компонентов) наносятся на горизонтальные плоскости, а значения температур – по вертикали. Основанием такой пространственной фигуры является обычно равносторонний (правильный) треугольник, по которому определяют значения концентраций всех трех компонентов в любом сплаве системы. Такой треугольник – основание диаграммы состояний тройной системы – называется концентрационным (рис. 23).
Рисунок 23 – Концентрационные треугольники тройной системы А-В-С
Метод отсчета состава сплава по концентрационному треугольнику заключается в следующем.
1 Через данную точку М внутри треугольника А-В-С проводят прямые, параллельные его сторонам. Отрезки на сторонах треугольника, заключенные между вершиной и точкой пересечения прямой, проведенной параллельно стороне треугольника, определяют количество того компонента, вершина которого противоположна стороне, параллельно которой проведена прямая. При таком методе отсчета необходимо следить, чтобы концентрация компонентов откладывалась в одном направлении (например, против часовой стрелки – см. рис. 23, а).
2 Другой способ. Вершины треугольника отвечают соответствующим чистым компонентам А, В и С. На сторонах треугольника будут находиться соответствующие двойные системы А – В, В – С и С – А, а все тройные сплавы (состоящие из трех компонентов) будут заключаться внутри треугольника, т.е. каждая точка в нем будет отвечать тройному сплаву определенного состава, и этот состав, т.е. концентрация компонентов в сплаве, определится по длине перпендикуляров, опущенных на стороны треугольника из точки, соответствующей составу взятого сплава. Основание: в равностороннем треугольнике сумма всех перпендикуляров, опущенных из любой точки на стороны треугольника, равна его высоте. Таким образом, если высоту треугольника разделить на 100 частей соответственно 100 % каждого компонента, а длины каждого из перпендикуляров в тех же единицах считать пропорциональными процентному содержанию компонентов в сплаве, то эти длины и будут определять концентрацию каждого из компонентов в сплаве, т.е. дадут его полный состав. Какой перпендикуляр какому компоненту соответствует, можно определить по фигуре: ведь каждая высота треугольника представляет перпендикуляр, определяющий 100 % компонента, расположенного в соответствующей вершине; поэтому все перпендикуляры, параллельные данной высоте, являются как бы частью этой высоты и определяют процент того самого компонента, 100 % которого определяются соответствующей высотой треугольника.
Следовательно, состав сплава, отвечающего любой точке треугольника, определяется длиной перпендикуляров, опущенных из этой точки на стороны треугольника, и каждый перпендикуляр соответствует процентному содержанию того компонента, который определяется высотой, параллельной данному перпендикуляру (см. рис. 23, б).
Тройные диаграммы строятся экспериментальным путем. Для этого, так же, как и в случае двойных сплавов, определяют критические температуры построением кривых охлаждения или нагрева и наносят на линию данного сплава, т.е. на перпендикуляр к плоскости в точке данного сплава. При соединении точек ликвидус получается поверхность ликвидус, а при соединении точек солидус получится поверхность солидус. Вид тройной диаграммы состояния зависит от того, какие фазы образуются в результате взаимодействия элементов в сплаве. Изучение их сложно. Рассмотрим наиболее простые случаи (рис. 24, 25).
Рисунок 24 – Диаграмма состояния тройных сплавов с неограниченной
растворимостью компонентов в жидком и твердом состояниях (а)
и кривая охлаждения сплава 1 (б)
Рисунок 25 – Диаграмма состояния трехкомпонентной системы.
Компоненты не растворимы в твердом состоянии
и образуют тройную эвтектику (пространственное изображение)
Поверхность А/В/С/ – поверхность ликвидус, вогнутая – поверхность солидус.
Для изучения таких диаграмм пользуются проекциями изотермических сечений, которые указывают для любого сплава температуру плавления, или развертками диаграмм (рис. 26).
Рисунок 26 – Диаграмма состояния трехкомпонентной системы.
Компоненты не растворимы в твердом состоянии
и образуют тройную эвтектику (развертка)
