- •1.Виды грунтовых отложений
- •2.Распределение отдельных видов грунтовых отложений на территории Украины и формирование региональных грунтовых территорий
- •3. Cложные инженерно-геологические условия
- •4.Эоловые отложения – лёссовые отложения их основные строительные свойства
- •6. Уравнение водонасыщенности грунта. Прокомментировать уравнение.
- •7. Методы решений уравнений водонасыщенности грунта.
- •8.Прокомментировать одномерное неустановившееся движение сплошного фильтрационного потока (Задача Ведерникова – Полубариновой – Кочиной).
- •9.Инженерные методы расчёта просадочных деформаций.
- •10. Зависимость между и уплотняющим напряжением.
- •17. Расчёт просадки в основании ЗиС
- •18. Общие требования и указания по проектированию на просадочных грунтах
- •19.Общие требования к расчёту и проектированию каркасных зданий каркасні будинки
- •21. Проектирование комплекса противопросадочных мероприятий: недопущение замачивания просадочной толщи
- •22. Поверхностное уплотнение
- •23. Проектирование грунтовых подушек
- •24. Химическое закрепление грунтов
- •25. Термическое закрепление грунтов.
- •31. Разработки кафедры ОиФ по ликвидации просадочности просадочных грунтов: общие сведения.
- •37) Лессовые грунты и инженерные методы устранения их просадочных свойств методы устранение просадочности лессовых грунтов
- •41. Технология уплотнения лёссовой толщи винтовым продавливанием.
- •42.Определение расстояний между осями винтового продавливания.
- •43. Сфера применения данного способа.
- •45. Прорезка просадочных грунтов свайными фундаментами
- •46.Определение несущей способности свай с полной прорезкой просадочной толщи
- •47.Определение сил отрицательного трения
- •48. Определение сил бокового трения на боковую поверхность забивных свай
- •49.Определение сил отрицательного трении по дбн.
- •56. Буро-инъекционные сваи по технологии пустотелого шнека.
- •59. Определение несущей способности буро-инъекционных свай по технологии пустотелого шнека
- •60. Выбор оптимальных решений устройства ОиФ на просадочных грунтах
- •71. Классификация подпорных стенок
- •72. Расчетные схемы гравитационных массивных стенок
- •73.Определение нагрузок на гравитационные стенки: давление грунта на стенки шпоры
- •80. Определение нагрузок на анкеры и расчет прочности анкеров.
- •81.Конструкция подпорных стенок и удерживающих конструкций из буронабивных свай.
- •82. Классификация оползнеудерживающих конструкция из буронабивных свай
- •87.Расчет устойчивости стены подвала на сдвиг по подошве.
- •88. Определение расчетных усилий в стенах подвала.
- •90.Контруирование подпорных стен и стен подвалов.
- •Подпорныестены
- •Определения и аббревиатура
80. Определение нагрузок на анкеры и расчет прочности анкеров.
Для расчетов анкерных креплений применяется расчетная нагрузка (расчетный показатель сопротивления) Rd, которая меньше предельной на коэффициент запаса прочности крепления γM. Коэффициенты γM различны для разных случаев нагружения, разных условий монтажа и разных методик расчета анкерных креплений и определяются опытным путем. Рекомендуемые минимальные значения коэффициентов γM для всех случаев разрушений приводятся в технической документации на анкеры, так называемых технических допусках. В каталогах коэффициенты запаса прочности приводятся редко, обычно публикуются допускаемые (рекомендуемые) нагрузки Rr или расчетные Rd . Иногда проектировщики и монтажники принимают расчетную нагрузку за допускаемую или рекомендуемую.
Согласно EUROCODE концепция надежности представляется:
где Sd – расчетная действующая нагрузка (расчетный показатель воздействия),
ГдеSm – максимальная действующая нагрузка;
γF – коэффициент запаса прочности воздействия, учитывающий неравномерность распределения нагрузки между анкерами, возможную динамическую (переменную) составляющую воздействия, возможный эксцентриситет приложения сил и т.п. В обычных условиях этот коэффициент запаса прочности равен 1.4. Таким образом, обычно при традиционных методах расчета допустимая (рекомендуемая) нагрузка Rr меньше расчетнойRdв 1.4 раза. И именно она применяется для проверочных прочностных расчетов анкерных креплений.
Надо отметить, что представленная выше зависимость не идеальна и пригодна для упрощенных методик расчета. Более точным является определение расчетной действующей нагрузки по формуле:
где Gk, Qk – действующие постоянная и переменная нагрузки соответственно;
γG, γQ – коэффициенты запаса прочности для постоянного и переменного воздействия. Обычно принимаются: γG = 1.35 и γQ = 1.5.
81.Конструкция подпорных стенок и удерживающих конструкций из буронабивных свай.
К противооползневым удерживающим конструкциям относятся свайные конструкции (свайные железобетонные столбы, буронабивные сваи, объединенные железобетонным ростверком), массивные подпорные стенки (монолитные железобетонные, сборные), анкерные крепления, армогрунтовые сооружения. Строительство противооползневых удерживающих сооружений начинается с подготовительных и разбивочных работ, которые выносят на местность геометрические параметры запроектированных конструкций. В период подготовительных работ устраивают построечный водоотвод. Характер основных работ зависит от устройства конкретных сооружений. При строительстве подпорных стенок сначала устраивают грунтовое основание или ростверк из буронабивных (забивных) свай. Саму подпорную стенку выполняют либо из монолитного армированного бетона, либо из сборных блоков с последующим их омоноличиванием. Использование свайных противооползневых конструкций в дорожном строительстве требует высокой индустриализации. Так, для устройства монолитных железобетонных столбов применяют метод шахтной проходки с креплением свай. Забивные сваи устраивают по известной технологии. Наибольший интерес представляет технология устройства противооползневых буронабивных свай. До начала работ площадку выравнивают для работы крана и буровых станков. Поперечный уклон площадки не должен превышать 20%. Для облегчения проезда строительной техники на площадке отсыпают слой щебня толщиной 10-15 см. Минимальная ширина площадки, обеспечивающая нормальную работу машин и механизмов, составляет 12 м. При необходимости устраивается временный водоотвод. Основной операцией является бурение свай, а применяющиеся при этом механизмы можно разделить на две группы: станки вращательного бурения и станки ударного бурения. Первая группа станков применяется в основном в относительно мягких грунтах, не имеющих скальных включений. В остальных случаях предпочтение отдается станкам ударного бурения. К отечественным станкам вращательного бурения относятся: УРБ-3АМ (диаметр скважины 600 мм, глубина бурения до 30 м); УГБХ-150 (диаметр скважины 800 мм, глубина бурения до 16 м); СО-1200 (диаметр скважины до 1000-1200 мм, глубина бурения до 22 м), работает на базе крана; МПС-1,7, МПС-1,2, МПУ-1,7 и другие станки, применяемые в мостостроении, помимо оснастки для вращательного бурения имеют оснастку для ударно-канатного бурения. Отечественные станки ударно-канатного бурения помимо указанных выше представлены агрегатами УКС-10, УКС-30, УКС-30М, БУ-10-2М, БС-1М, позволяющими погружать сваи диаметром 450-1200 мм, глубиной до 30 м. инженерный конструктивный противооползневый земляной . Арматурные каркасы для буронабивных свай доставляют на стройплощадку отдельными секциями длиной 8 м, где и производится их монтажная сборка. Сваи бетонируют литым бетоном марки 250 через бетонолитные трубы методом восходящего потока (ВПТ). Для защиты бетона от вымывания грунтовыми водами бетонирование свай ведется в чехлах из полиэтиленовой пленки, надеваемой на арматурные каркасы до погружения их в скважины. В тех случаях, когда отсутствуют грунтовые воды, бетонирование осуществляют методом свободного сброса бетонной смеси. Процесс бетонирования методом ВПТ после установки в скважину арматурного каркаса включает: первоначальное заполнение бетонолитной трубы бетонной смесью; непрерывную укладку бетонной смеси; освобождение бетонолитной трубы от смеси после окончания бетонирования. Максимальная скорость движения смеси в трубе не должна превышать 120 мм/с, а перерыв в бетонировании должен быть не больше времени начала схватывания смеси. Прекращение подачи бетона в скважину осуществляется только после полного вытеснения из нее шлама, воды, слабого бетона. Головную часть сваи бетонируют в инвентарном кондукторе, превышая при этом на 30 см проектную отметку. В процессе строительства буроналивных свай ведется тщательный контроль за бурением скважин, изготовлением и установкой арматурных каркасов, приготовлением бетонной смеси и т. д. Для сооружения подпорных стенок неглубокого залегания на естественном основании, а также стенок на свайном фундаменте устраивается котлован в виде сплошной продольной выемки. Ширина котлована определяется шириной подошвы сборной конструкции в плане, а для монолитных стенок должен быть обеспечен некоторый запас, необходимый для установки подмостей и опалубки.
