Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИР_Корреляция.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
31.07 Кб
Скачать

По данным выборки двумерной случайной величины определить:

1) выборочную среднюю ( );

2) выборочную дисперсию (Dx, Dy);

3) выборочный коэффициент корреляции;

4) выборочное уравнение прямой линии регрессии Y на X и выборочное уравнение прямой линии регрессии X на Y.

Сделать рисунок.

Вариант №1

(41.2, 116.5) (48.1, 124.6) (53.2, 153.9) (39.1, 99.0) (50.2, 191.6) (39.0, 94.9) (39.4, 100.2) (50.2, 178.6) ( 48.3, 118.7) (39.6, 117.0) (41.3, 81.7) (35.2, 88.0) (47.9, 159.4) (34.6, 124.4) (33.2, 103.4) (35.7, 94.9) (36.8, 90.8) (50.8, 180.5) (44.5, 152.0) (46.3, 167.6) (34.8, 84.6) (39.2, 124.5) (36.8, 131.7) (46.0, 99.8) (40.4, 144.8) (41.5, 120.6) (44.5, 109.7) (38.9, 93.5) (49.8, 136.8) (45.6, 107.6) (33.0, 102.9) (47.6, 102.9) (32.5, 116.7) (42.0, 134.0) (54.1, 157.9) (35.4, 109.1) (37.9, 92.4) (38.6, 120.7) (35.6, 96.1) (33.6, 73.2) (27.7, 61.5) (47.1, 95.0) (29.9, 82.8) (50.1, 110.5)

Вариант №2

(50.0, -92.8) (27.4, -49.5) (47.7,-105.8) (35.1, -67.0) (30.5, -55.7) (39.5, -67.3) (54.8, -89.1) (57.3,-134.2) (43.0,-109.1) (43.7, -68.7) (34.6, -74.6) (47.2,-105.6) (42.4,-106.2) (57.6,-164.1) (38.8, -59.7) (37.3, -81.7) (35.5, -67.2) (41.9,-119.3) (23.0, -64.2) (45.3, -96.5) (51.5,-148.9) (50.9,-118.5) (58.6,-151.8) (33.6, -65.7) (31.2, -83.0) (35.3, -68.9) (49.8, -87.0) (38.5, -58.9) (32.9, -71.8) (54.4,-103.4) (39.3, -58.7) (46.0,-107.7) (25.0, -43.4) (31.6, -70.0) (29.0, -76.4) (27.4, -56.9) (46.4,-111.0) (35.0, -71.5) (39.5,-104.4) (27.1, -47.6)

Вариант №3

(62.1, -89.2) (17.3, -40.6) (36.8, -81.4) (31.3, -50.0) (33.7, -56.3) (36.0, -49.6) (48.5, -65.2) (16.3, -22.2) (22.3, -47.2) (32.2, -70.4) (48.0, -87.9) (27.0, -45.5) (36.1, -49.7) (35.6, -65.8) (39.7, -84.2) (23.9, -53.5) (49.2, -83.7) (22.4, -27.8) (23.4, -51.7) (35.7, -83.6) (46.0,-101.2) (52.4,-109.1) (43.9,-106.1) (44.5, -68.3) (28.0, -47.8) (52.3, -72.5) (27.7, -63.7) (30.8, -41.7) (38.5, -75.4) (44.2, -55.9) (21.5, -49.9) (32.3, -71.8) (81.7,-110.2) (31.1, -52.8) (48.0, -63.8) (34.1, -82.2) (41.6, -58.1) (41.1, -73.4) (34.5, -65.4) (52.3, -78.1) (51.5,-121.0) (27.5, -58.8)

Вариант №4

(40.2,-135.8) (48.5,-145.2) (56.4,-128.6) (53.3,-119.6) (44.1,-134.1) (46.4,-129.0) (42.9,-129.7) (47.1,-123.1)

(57.5,-153.4) (50.5,-153.6) (40.4, -77.5) (43.2,-124.7) (59.6,-148.4) (54.8,-159.3) (45.2, -88.2) (39.4,-109.7)

(37.9,-123.5) (45.4,-165.9) (41.5, -85.9) (34.3,-109.3) (47.6,-129.4) (47.6,-167.8) (57.1,-202.7) (35.0, -66.6)

(35.6, -69.1) (53.5,-147.7) (47.7,-171.0) (41.3,-132.0) (53.4,-134.8) (47.0,-132.3) (39.7, -74.7) (36.7,-120.6)

(48.6, -91.7) (43.6,-102.1) (38.8,-135.7) (39.8, -90.6) (43.2,-156.7) (39.5, -80.0) (42.0,-105.3) (51.7,-177.1)

Вариант №5

(25.0, 101.1) (46.4, 123.7) (44.8, 131.2) (40.7, 143.4) (17.5, 59.9) (27.8, 96.8) (35.0, 71.2) (37.1, 99.0) (47.1, 135.5) (23.2, 63.7) (38.8, 85.4) (29.2, 105.4) (39.8, 131.1) (34.9, 115.1) (59.1, 149.8) (30.9, 62.9) (38.3, 150.5) (38.8, 151.8) (58.1, 205.8) (50.9, 110.8) (65.7, 253.4) (35.3, 111.3) (49.8, 162.4) (23.3, 83.1) (31.6, 126.7) (37.9, 91.8) (26.1, 67.9) (37.3, 108.7) (31.5, 96.9) (66.0, 134.9) (41.4, 164.0) (46.9, 120.0) (45.2, 93.4) (50.3, 155.0) (26.1, 72.9) (46.8, 96.8) (41.5, 103.5) (28.9, 110.6) (20.5, 51.4) (35.9, 87.9) (28.8, 102.4) (45.0, 118.9) (47.3, 176.6)