- •1. Общая и основная задача линейного программирования (лп).
- •2.Формулы Эрланга систем массового обслуживания
- •1.Понятие плана. Выпуклость множества планов. Понятие опорного плана. Область допустимых решений задач лп.
- •Правила выбора разрешающего элемента при поиске опорного плана.
- •2.Теория графов Календарное планирование
- •3. Оценка потреб-
- •2. Оценка продол-
- •Расчленение
- •1.Двойственность и эквивалентность задач лп.
- •2.Матричные игры. Цена игры. Оптимальные стратегии
- •1.Стандартная (каноническая) задача (лп) и ее геометрическая интерпретация.
- •2.Матричные игры со смешанными стратегиями. Оптимальные стратегии
- •1.Оптимальный план. Достаточное условие существования оптимального плана..
- •2. Модель управления запасами.
- •1. Опорный план транспортной задачи. Метод «северо- западного угла». Метод минимального элемента. Метод северо-западного угла
- •Метод минимальной стоимости
- •2. Характеристики работы разомкнутых смо
- •1. Оптимальный план транспортной задачи. Метод потенциалов.
- •2. Системы массового обслуживания с ожиданием.
- •1.Модификация транспортной задачи.
- •2. Графический способ решения задачи лп
- •1. Основные понятия теории графов. Критический путь
- •2. Паутинная модель рынка.
- •1. Сетевые графики.
- •2. Теорема теории игр Неймана.
- •1.Метод наименьших квадратов. Система нормальных уравнений мнк
- •2. Имитационные модели.
- •1. Модель Леонтьева Многоотраслевой экономики (балансовый анализ).
- •2. Интерполирование опытных данных. Линейное интерполирование
- •1. Продуктивные модели Леонтьева.
- •2. Матричное решение задачи лп
- •1. Линейная модель обмена. Модель международной торговли.
- •2. Система массовое обслуживание с ограниченным временем ожиданием.
- •1. Модель равновесных цен. Балансовая модель.
- •2.Функции спроса и предложения. Равновесная цена.
- •1. Метод последовательного улучшения базисного плана. Симплекс метод.
- •2.Однофакторная линейная регрессионная модель
- •1. Финансовые операции и их эффективность. Виды начисления процентов на денежный вклад.
- •2. Локальная и интегральная теоремы Лапласа.
- •1. Кооперативные игры. Точка равновесия по Нэшу
- •2. Двойственность задач линейного программирования.. Двойственная задача линейного программирования.
1.Понятие плана. Выпуклость множества планов. Понятие опорного плана. Область допустимых решений задач лп.
Построение
оптимального плана. Для
того чтобы опорный план был оптимален,
при минимизации целевой функции
необходимо, чтобы коэффициенты в строке
целевой функции были неположительными
(в случае максимизации – неотрицательными).
Т.е. при поиске минимума мы должны
освободиться от положительных
коэффициентов в строке
.
Выбор разрешающего
элемента.
Если при поиске минимума в строке целевой
функции есть коэффициенты больше нуля,
то выбираем столбец с положительным
коэффициентом в строке целевой функции
в качестве разрешающего. Пусть это
столбец с номером
.
Для выбора разрешающей строки (разрешающего элемента) среди положительных коэффициентов разрешающего столбца выбираем тот (строку), для которого отношение коэффициента в столбце свободных членов к коэффициенту в разрешающем столбце минимально:
.
–
разрешающий
(направляющий) элемент, строка
– разрешающая.
Для перехода к следующей симплексной таблице (следующему опорному плану с меньшим значением целевой функции) делается шаг модифицированного жорданова исключения с разрешающим элементом .
Если в разрешающем столбце нет положительных коэффициентов, то целевая функция неограничена снизу (при максимизации – неограничена сверху).
Правила выбора разрешающего элемента при поиске опорного плана.
При условии отсутствия “0-строк” (ограничений-равенств) и “свободных” переменных (т.е. переменных, на которые не наложено требование неотрицательности).
Если в столбце свободных членов симплексной таблицы нет отрицательных элементов, то опорный план найден.
Есть отрицательные элементы в столбце свободных членов, например
.
В такой строке ищем отрицательный
коэффициент
,
и этим самым определяем разрешающий
столбец
.
Если не найдем отрицательный
,
то система
ограничений несовместна
(противоречива).В качестве разрешающей выбираем строку, которой соответствует минимальное отношение:
,
где
- номер разрешающей строки. Таким
образом,
- разрешающий элемент.После того, как разрешающий элемент найден, делаем шаг модифицированного жорданова исключения с направляющим элементом и переходим к следующей симплексной таблице.
2. В случае присутствия ограничений-равенств и “свободных” переменных поступают следующим образом.
Выбирают разрешающий элемент в “0-строке” и делают шаг модифицированного жорданова исключения, после чего вычеркивают этот разрешающий столбец. Данную последовательность действий продолжают до тех пор, пока в симплексной таблице остается хотя бы одна “0-строка” (при этом таблица сокращается).
Если же присутствуют и свободные переменные, то необходимо данные переменные сделать базисными. И после того, как свободная переменная станет базисной, в процессе определения разрешающего элемента при поиске опорного и оптимального планов данная строка не учитывается (но преобразуется).
