- •Билет 2: Естественнонаучная и гуманитарная культуры
- •Билет 3: Научная картина мира
- •Билет 4: Методы эмпирического уровня познания. Понятие факта.
- •Билет 5: Методы теоретического уровня познания. Гипотеза и теория.
- •Билет 6: Революционные и эволюционные периоды
- •Билет 7: Основные этапы развития естествознания
- •Билет 8: Натурфилософия. Основные достижения древнего естествознания.
- •Билет 9: Первая физико-космологическая модель мира
- •Билет 10: Геоцентрическая система Птолемея
- •Билет 11: Основные черты средневековой картины мира
- •Билет 12: Гелиоцентрическая система Коперника. Законы Кеплера.
- •Билет 13: Основные черты механистической картины мира
- •Билет 14: Динамические законы Ньютона.
- •Билет 15: Закон всемирного тяготения.
- •Билет 16: Теория электромагнитного поля. Вещество и поле.
- •Билет 17: Принципы относительности Галилея и Эйнштейна.
- •Билет 18: Пространство и время в классической механике и теории относительности.
- •Билет 19: Принцип эквивалентности и ото.
- •Билет 20: Тяготение и свойства пространства и времени.
- •Билет 22: Два начала термодинамики.
- •Билет 23: Энтропия. Вероятность, информация. Их свзяь.
- •Билет 24: Детерминизм и его виды.
- •Билет 25: Понятие вероятности. Динамические и статистические закономерности.
- •Билет 26: Виды взаимодействий в природе.
- •Билет 27: Учение о составе вещества. Природа химического соединения.
- •Билет 28: Периодическая система Менделеева.
- •Билет 29: Структурная химия и химия процессов
- •Билет 30: Эволюционная химия
- •Билет 31: Понятие живого. Структурные уровни живого.
- •Билет 32: Принципы эволюционной теории ч. Дарвина
- •Билет 33: Генетика: основные понятия и принципы. Достижения генетики в хх веке.
- •Билет 34: Синтетическая теория эволюции.
- •Билет 35: Основные концепции антропогенеза.
- •Билет 36: Основные черты биосферы как системы.
- •Билет 37: Учение о ноосфере.
- •Билет 38: Экология как наука. Сущность экологических проблем.
- •Билет 39: Понятие самоорганизации. Условия и механизмы самоорганизации.
- •Механизмы самоорганизации:
- •Билет 40: Принцип универсального эволюционизма.
- •Билет 41: Корпускулярно-волновой дуализм. Принцип дополнительности.
- •Билет 42: Квантовая механика и строение атома.
- •Билет 43: Принцип неопределенности. Понятие физического вакуума.
- •Билет 44: Принцип соответствия. Соотношение между классической механикой и теорией относительности, классической и квантовой механиками.
- •Билет 45: Строение Солнечной системы. Солнечно-земные связи.
- •Билет 46: Строение звезд.
- •Билет 47: Эволюция звезд.
- •Билет 48: Теория расширяющейся Вселенной. Большой взрыв.
- •Билет 49: Проблемы поиска внеземных цивилизаций.
- •Билет 50: Антропный принцип в космологии.
Билет 29: Структурная химия и химия процессов
Структурная химия представляет собой уровень развития химических знаний, на котором доминирует понятие «структура», т.е. структура молекулы, макромолекулы, монокристалла.
С возникновением структурной химии у химической науки появились неизвестные ранее возможности целенаправленного качественного влияния на преобразование вещества. Еще в 1857 г. немецкий химик Ф.А. Кекуле показал, что углерод четырехвалентен, и это дает возможность присоединить к нему до четырех элементов одновалентного водорода. Азот может присоединить до трех одновалентных элементов, кислород — до двух. Эта схема Кекуле натолкнула исследователей на понимание механизма получения новых химических соединений. А.М. Бутлеров заметил, что в таких соединениях большую роль играет энергия, с которой вещества связываются между собой. В настоящее время структура молекулы понимается как ее пространственная и энергетическая упорядоченность.
В 60—80-е годы XX в. было изучено такое явление, как органический синтез. Из каменноугольной смолы и аммиака были получены новые красители — фуксин, анилиновая соль, ализарин, а позднее — взрывчатые вещества и лекарственные препараты — аспирин и др. Структурная химия дала повод для оптимистических заявлений, что химики могут все.
Однако дальнейшее развитие химической науки и основанного на ее достижениях производства показали более точно возможности и пределы структурной химии. На ее уровне не представлялось возможным получение этилена, ацетилена, бензола и других углеводородов из парафиновых углеводородов. Многие реакции органического синтеза на основе структурной химии давали очень низкие выходы необходимого продукта и большие отходы в виде побочных продуктов. Вследствие этого их нельзя было использовать в промышленном масштабе.
Кроме того, для производства на основе органического синтеза использовалось дорогостоящее сельскохозяйственное сырье — зерно, жиры, молочные продукты. А сам технологический процесс был многоэтапным и трудноуправляемым.
В последнее время ученые открыли новую группу металлоорганических соединений с двойной структурой. Это не что иное, как молекула, представляющая собой две пластины из соединений водорода и углерода, между которыми находится атом металла или атомы двух металлов. Пока данные соединения практического применения не нашли, но оказали влияние на пересмотр прежних взглядов на валентность и химические связи. Их рассматривают как доказательство наличия электронно-ядерного взаимодействия молекул.
Структурная химия неорганических соединений ищет пути получения кристаллов для производства высокопрочных материалов с заданными свойствами, обладающих термостойкостью, сопротивлением агрессивной среде и другими качествами, предъявляемыми сегодняшним уровнем развития науки и техники. Решение этих вопросов наталкивается на различные препятствия. Выращивание, например, некоторых кристаллов требует исключения условий гравитации, поэтому такие кристаллы выращивают в космосе, на орбитальных станциях. Химические процессы представляют собой сложнейшее явление как в неживой, так и живой природе. Эти процессы изучают химия, физика и биология. Перед химической наукой стоит принципиальная задача — научиться управлять химическими процессами. Дело в том, что некоторые процессы не удается осуществить, хотя, в принципе, они осуществимы, другие трудно остановить — реакции горения, взрывы, а часть из них трудноуправляема, поскольку они самопроизвольно создают массу побочных продуктов. Для управления химическими процессами разработаны термодинамический и кинетический методы.
Все химические реакции имеют свойство обратимости, происходит перераспределение химических связей. Обратимость удерживает равновесие между прямой и обратной реакциями. Все проблемы, связанные с такими сложными процессами как, например, получение аммиака, решает химическая кинетика. Она устанавливает зависимость химических реакций от различных факторов — от строения и концентрации реагентов, наличия катализаторов, от материала и конструкции реакторов и т.д.
