- •«Национальный исследовательский томский политехнический университет» а.Н. Осокин периферийные устройства
- •Часть 1
- •Оглавление
- •Тема 1 Интерфейсы для подключения периферийных устройств 10
- •Тема 2 Устройства ввода 61
- •Тема 3 Общие сведения о формировании изображений 110
- •Тема 4 Видеосистема 119
- •Введение
- •Тема 1 Интерфейсы для подключения периферийных устройств
- •1.1. Общая характеристика интерфейсов информационных систем
- •1.1.1. Понятие интерфейса
- •1.1.2. Стандартизация интерфейсов
- •1.1.3. Классификация аппаратных интерфейсов
- •1.1.4. Принцип обмена данными
- •1.1.5. Режимы передачи данных
- •1.2. Интерфейс rs-232
- •1.2.1. Общие сведения об интерфейсе
- •1.2.2. Порты асинхронного адаптера персонального компьютера
- •1.3. Интерфейс ieee 1284
- •1.3.1. Общие сведения об интерфейсе
- •1.3.2. Параллельные порты пк
- •1.4.1. Общие сведения
- •1.4.2. Составляющие usb
- •1.4.3. Физическая архитектура шины usb
- •1.4.4. Аппаратное обеспечение usb
- •1.4.5. Физический интерфейс
- •1.4.6. Ограничения usb 1.1 и usb 2.0
- •1.5. Интерфейс 1394 (FireWire)
- •1.5.1. Общие сведения
- •1.5.2. Спецификации интерфейса FireWire
- •1.5.3. Разъёмы и кабель
- •1.5.4. Преимущества интерфейса ieee 1394 и его использование
- •1.6. Беспроводные интерфейсы
- •Тема 2 Устройства ввода
- •2.1. Клавиатура
- •2.1.1. Принцип действия клавиатуры
- •2.1.2. Взаимодействие клавиатуры с системами персонального компьютера
- •2.1.3. Стандартная раскладка и назначение клавиш
- •2.2. Манипулятор «мышь»
- •2.2.1.Общие сведения о мыши. Принцип работы мыши
- •2.2.2. Кнопки мыши
- •2.2.3. Интерфейс подключения
- •2.2.4. Характеристики мыши
- •2.2.5. Эргономические проблемы использования мыши
- •2.3. Графические планшеты (дигитайзеры)
- •2.3.1. Назначение и принцип действия графических планшетов
- •2.3.2. Характеристики планшетов
- •2.4. Джойстики
- •2.4.1. Назначение джойстиков
- •2.4.2. Джойстики с плавным регулированием
- •2.4.3. Оптические и потенциометрические джойстики
- •2.4.4. Оси плавного регулирования
- •2.4.5. Функция обратной силовой связи
- •2.5. Сканеры
- •2.5.1. Назначение и принцип работы сканера
- •2.5.2. Классификация сканеров
- •2.5.3. Параметры сканеров
- •2.5.4. Программы оптического распознавания символов (ocr)
- •2.6. Цифровые фотоаппараты
- •2.6.1. Общие принципы работы цифровых фотоаппаратов
- •2.6.2. Классификация цифровых фотоаппаратов
- •2.7. Устройства естественного взаимодействия
- •2.8. Нейрокомпьютерный интерфейс
- •Тема 3 Общие сведения о формировании изображений
- •3.1. Методы вывода изображений
- •3.2. Формирование цветных изображений в визуализаторах
- •3.3. Формирование цветных изображений при печати
- •Тема 4 Видеосистема
- •4.1. Состав видеосистемы pc-совместимого компьютера
- •4.2. Мониторы
- •4.2.1. Структура монитора и виды мониторов
- •4.2.2. Жидкокристаллические мониторы
- •4.2.3. Плазменные панели
- •4.2.4. Органические светодиодные мониторы (oled)
- •4.2.5. Pled-мониторы
- •4.2.7. Энергосберегающие устройства отображения информации
- •4.3. Мультимедиапроекторы
- •4.3.1. Принцип действия и классификация компьютерных проекторов
- •4.3.2. Основные характеристики мультимедийных проекторов
- •4.3.3. Мультимедийные tft-проекторы
- •4.3.4. Полисиликоновые проекторы
- •4.3.5. Dmd/dlp-проекторы
- •4.3.6. Lcos-проекторы (d-ila-проекторы)
- •4.3.8. Светодиодные проекторы
- •4.4. Устройства отображения объемных изображений
- •4.4.1. Особенности восприятия человеком объемных изображений
- •4.4.2. Двухэкранные устройства отображения объемных изображений
- •4.4.3. Одноэкранные устройства отображения объемных изображений
- •4.5. Интерактивные доски
- •4.5.1. Функции и виды интерактивных досок
- •4.5.2. Интерактивные доски прямой проекции
- •4.5.3. Интерактивные доски обратной проекции
- •4.5.4. Интерактивные насадки на плазменные и lcd-дисплеи
- •4.5.5. Интерактивные жк-доски
- •4.6. Электронные книги
- •4.7. Видеоадаптеры
- •4.7.1. Назначение и принцип работы видеоадаптера
- •4.7.2. Устройство современного видеоадаптера
- •4.7.3. Технологии повышения реалистичности трехмерного изображения
- •4.7.4. Интерфейс прикладного программирования (api)
- •4.8. Интерфейсы видеосистемы
- •4.8.1. Назначение интерфейсов и их виды
- •4.8.2. Цифровые интерфейсы подключения мониторов к видеоадаптеру
- •Список источников
- •Периферийные устройства
- •Часть 1
- •Зарегистрировано в Издательстве тпу Размещено на корпоративном портале тпу в полном соответствии с качеством предоставленного оригинал-макета
2.4. Джойстики
2.4.1. Назначение джойстиков
Джойстик (рис. 2.14) – устройство для ввода информации, относящееся к классу игровых манипуляторов, с помощью которого предоставляется возможность задавать координаты графического объекта. Разнообразие джойстиков весьма велико и обусловливается видом игр, для которых они предназначаются; зачастую джойстиками называют все виды игровых манипуляторов (например: рули, педали, штурвалы, геймпады и т.д.).
Ранее джойстики для ПК подключались к нему через игровой порт, далее полностью произошёл переход к стандартному интерфейсу USB. Долгое время у игровых приставок джойстики подключались через специализированный разъём, специфичный для каждой фирмы-производителя, поэтому джойстик для одной приставки не подходил к другой или же к ПК. В настоящее время джойстики имеют стандартный интерфейс USB, поэтому могут подключаться как к приставке, так и к персональному компьютеру.
Первые примитивные цифровые джойстики представляли собой стержень, укрепленный на крестовине, имеющей четыре электрических контакта. Чтобы выбрать одно из четырех направлений, нужно наклонить стержень в соответствующую сторону. При замыкании сразу двух контактов добавляются еще четыре направления (рис. 2.15). Подобные джойстики существовали во времена компьютеров Amiga, Commodore 64 и MSX.
|
|
Рис. 2.14. Внешний вид джойстика |
Рис. 2.15. Принцип действия джойстика первого поколения |
Очевидно, что обеспечить плавное регулирование такой джойстик не мог и поэтому плохо подходил для авиасимуляторов. С тех пор джойстики изменились до неузнаваемости, и все же их отличительным признаком по-прежнему остается рукоятка определенного дизайна, закрепленная на стационарной платформе и наклоняющаяся во всех направлениях.
2.4.2. Джойстики с плавным регулированием
Следующий этап развития джойстиков ознаменован появлением аналоговых устройств, которые имели в своей основе потенциометры (рис. 2.16) и могли осуществлять плавное регулирование. В них основание стержня проходит через валик и подвеску, подсоединенные к потенциометрам. Каждый потенциометр регистрирует движение в своей плоскости. Эти устройства посылают в игровой порт аналоговый сигнал, который обрабатывается контроллером игрового порта и ЦП, а затем в цифровом виде используется программными интерфейсами. С тех пор, как джойстики стали обеспечивать плавное регулирование, их начали использовать для авиационных симуляторов.
Рис. 2.16. Устройство аналогового джойстика
Со временем джойстики снова стали цифровыми, но уже другого уровня: такой джойстик генерирует сигнал обычно на базе тех же технологий, что и аналоговый, а затем внутри себя оцифровывает этот сигнал и передает его в компьютер уже в цифровой форме. Преимущество этого решения заключается в том, что аналоговый сигнал превращается в цифровой до того, как он попадает в игровой порт (сильно зашумленное в электронном смысле пространство).
2.4.3. Оптические и потенциометрические джойстики
Потенциометры имеют скользящие контакты, которые засоряются пылью и продуктами окисления, что ухудшает контакт и может приводить к проблемам управления. Этих недостатков лишены оптические джойстики (рис. 2.17), в которых вместо резисторов используются оптические сенсоры, менее подверженные износу. Несмотря на указанные преимущества оптических джойстиков, большинство производителей используют для считывания положения органов управления электрические потенциометры.
Рис. 2.17. Устройство оптического джойстика: 1 – оптический сенсор; 2 – два лазера на ручке (X, Y и вращение); 3 – лазер колёсика (газ/тяга)
