- •1 Adams/View Basics 1
- •2 Building Models in adams/View 13
- •3 Simulating Models in adams/View 46
- •4 Examples 53
- •5 Introduce adams/Car 113
- •6 Introducing Analyses in adams/Car 116
- •7 Creating and Simulating Suspensions 129
- •8 Template Builder Tutorial 141
- •SectionⅠ- adams/View
- •1.1.1 Steps in Modeling and Simulating
- •1.1.2 Build Your Model
- •Figure 1.1 Steps in Modeling and Simulating
- •1.1.3 Test and Validate Your Model
- •Validating Simulation Results
- •1.1.4 Refine Your Model and Iterate
- •1.1.5 Customize and Automate adams/View
- •1.2 Working with the adams/View
- •1.2.1 Starting adams/View
- •1.2.2 Adams/View Main Window
- •Figure 1.2 Initial adams/View Window
- •1.2.3 Starting a New Modeling Session
- •Figure 1.3. Welcome Dialog Box
- •1.3 Defining the Modeling Environment
- •1.3.1 Specifying the Type of Coordinate System
- •1. Types of Coordinate Systems
- •Figure 1.4 adams/View Coordinate System
- •2. About Orientation Angles and Rotations
- •3. Setting the Default Coordinate System
- •1.3.2 Setting Units of Measurement
- •1.3.3 Specifying Gravitational Force
- •1.3.4 Specifying Working Directory
- •2 Building Models in adams/View
- •2.1 Creating Parts
- •Figure 2.1 Geometric Modeling Palette and Tool Stack
- •2.1.1 Creating Construction Geometry
- •Table 2.1 Types of construction geometry
- •1. Defining Points
- •2. Defining Coordinate System Markers
- •Figure 2.2 Marker Screen Icons
- •3. Creating Lines and Polylines
- •4. Creating Arcs and Circles
- •5. Creating Splines
- •2.1.2 Creating Solid Geometry
- •Table2.2 adams/View Solid Geometry
- •1. Creating a Box
- •2. Creating Two-Dimensional Plane
- •3. Creating a Cylinder
- •4. Creating a Sphere
- •5. Creating a Frustum
- •6. Creating a Torus
- •7. Creating a Link
- •8. Creating a plate
- •9. Creating an Extrusion
- •2.1.3 Creating Complex Geometry
- •1. Chaining Wire Construction Geometry
- •2. Combining Geometry
- •2.1.4 Adding Features to Geometry
- •2.1.5 Working with Point Masses
- •2.2 Modifying Parts
- •2.2.1 Modifying Rigid Body Geometry
- •2.2.2 Modifying Part Properties
- •2.3 About Constraining Your Model
- •2.3.1 Types of Constraints
- •2.3.2 Accessing the Constraint Creation Tools
- •Figure 2.3 Constraint Palette and Tool Stacks
- •2.3.3 Working with Joints
- •2.3.3.1 Working with Idealized Joints
- •Table1 2.3 Simple joints in adams/View
- •Table1 2.4 Complex joints in adams/View
- •2.3.3.2 Working with Joint Primitives
- •Table1 2.5 Joint Primitives in adams/View
- •2.3.3.3 Working with Higher-Pair Constraints
- •2.3.3.4 Working with Motions generators
- •1. Joint Motion
- •2. Point Motion
- •2.4 Applying Forces to Your Model
- •2.4.1 Accessing the Force Tools
- •Figure 2.4 Create Forces Palette and Tool Stack
- •2.4.2 Constructing Applied Forces
- •2.4.3 Constructing Flexible Connectors
- •2.4.2.1. Working with Bushings
- •2.4.2.2 Working with Translational Spring-Dampers
- •2.4.2.3 Adding a Torsion Spring
- •2.4.2.4 Adding a Massless Beam
- •2.4.2.5 Adding a Field Element
- •3 Simulating Models in adams/View
- •3.1 Types of Simulations
- •3.2 Accessing the Simulation Controls
- •Figure 3.1 Simulation Controls
- •3.3 Performing an Interactive Simulation
- •3.4 Viewing and Controlling Animations
- •3.4.1 About Animating Your Simulation Results
- •3.4.2 Accessing the Animation Controls
- •Figure 3.2 Animation Container and Animation Control Dialog Box
- •3.4.3 Playing Animations
- •Table 3.1 Animation Play Options
- •4 Examples
- •4.1 The Latch Design Problem
- •4.1.1 Introducing the Latch Design Problem
- •Figure 4.1 Physical Model of Hand Latch Design
- •Figure 4.2 adams/View Latch Model
- •4.1.2 Building Model
- •Figure 4.3 Latch in Build Phase
- •1. To start adams/View and Setting Up Your Work Environment
- •2. Creating Design Points
- •Table 4.1 Points Coordinate Locations
- •3. Creating the Pivot
- •4. Creating the Handle
- •5. Creating the Hook
- •Table 4.2 Extrusion Coordinate Values
- •6. Creating the Slider
- •Table 4.3 Points Coordinate Locations
- •7. Connecting the Parts Using Revolute Joints
- •8. Simulating the Motion of Your Model
- •9. Saving Your Database
- •4.1.3 Testing Your First Prototype
- •1. Creating the Ground Block
- •2. Adding a Three-Dimensional Contact
- •3. Adding a Spring
- •4. Creating a Handle Force
- •5. Creating a Measure on the Spring Force
- •6. Creating an Angle Measure
- •Table 4.4 Overcenter_angle Measure Markers
- •Figure 4.4 Graphical Representation of overcenter_angle
- •7. Creating a Sensor
- •8. Saving Your Model
- •9. Simulating Your Model
- •4.1.4 Validating Results Against Physical Test Data
- •1. Importing Physical Test Data
- •2. Creating a Plot Using Physical Test Data
- •Figure 4.5 adams/PostProcessor
- •3. Modifying Your Plot Layout
- •4. Creating a Plot Using Virtual Test Data
- •5. Saving Your Model
- •4.1.5 Refining Your Design
- •1. Creating Design Variables
- •2. Reviewing Design Variable Values
- •4.1.6 Iterating Your Design
- •1. Performing a Manual Study
- •2. Running a Design Study
- •Dv_1 versus Trial plot Overcenter_angle plot
- •Design study report
- •3. Examining the Results of Design Studies
- •Table 4.5 Design Studies Results
- •4.1.7 Optimizing Your Design
- •1. Modifying Design Variables
- •Table 4.6 Design Variable Limits
- •2. Running an Optimization
- •4.2 The Front Suspension Design Problem
- •4.2.1 Introducing the Front Suspension Design Problem
- •Figure 4.6 Physical Model of Front Suspension
- •Figure 4.7 adams/View Front Suspension Model
- •4.2.2 Building Model
- •1. To start adams/View and Setting Up Your Work Environment
- •2. Creating Design Points
- •Table 4.7 Points Coordinate Locations
- •8. Creating the Knuckle
- •9. Creating the Wheel
- •10. Creating the Test_Patch
- •11. Creating the Spring
- •12. Creating the Spherical Joint
- •13. Creating the Fixed Joint
- •14. Creating the Revolute Joint
- •4.2.3 Testing the Front Suspension
- •2. Simulating the Motion of Your Model
- •3. Creating a Measure on the Kingpin_Inclination
- •Fig. The curve of the Kingpin_Inclination vs time
- •4. Creating a Measure on the Kingpin_Caster_Angle
- •5. Creating a Measure on the Front_Wheel Camber_Angle
- •6. Creating a Measure on the Front_Wheel Toe_Angle
- •7. Creating a Measure on the Sideways_Displacement of the Wheel
- •8. Creating a Measure on the Wheel_Travel
- •9. Creating curves on the Front Suspension characteristic
- •4.3 The Full Vehicle Design Problem
- •4.3.1 Creating Chassis Model
- •1. To start adams/View and Setting Up Your Work Environment
- •2. Creating Design Points
- •3. Creating Chassis
- •4.3.2 Creating Front Suspension Model
- •1. Creating Design Points
- •Table 4.8 Points Coordinate Locations
- •2. Creating Front Suspension
- •Figure 4.13 The body model of the chassis and the front suspension
- •3. Creating the Constraint Joint
- •4. Creating the Spring
- •Figure 4.14 The model of the chassis and the front suspension
- •4.3.3 Creating Steering System Model
- •1. Creating Design Points
- •Table 4.9 Points Coordinate Locations
- •2. Creating Steering System
- •Figure 4.15 The model of the steering trapezium
- •Figure 4.16 The model of the steering system
- •3. Creating the Constraint Joint
- •4.3.4 Creating Rear Suspension Model
- •1. Creating Design Points
- •Table 4.10 Points Coordinate Locations
- •2. Creating Rear Suspension
- •Figure 4.17 The model of the rear suspension
- •3. Creating the Constraint Joint
- •Figure 4.18 Creating the Revolute Joint
- •4. Creating the Spring
- •4.3.5 Creating Tire and Road
- •1. Creating Tire Property File
- •Figure 4.20 Analytical and Geometrical Representation of Tire
- •2. Creating Road Data File
- •3. Creating Tire and Road
- •Figure 4.21 The model of Tire
- •Figure 4.22 Full vehicle models
- •4.3.6 Testing the Full Vehicle
- •1. Creating Motion and Torque
- •Figure 4.23 Joint Motion Dialog Box
- •2. Creating curves on the vehicle characteristic
- •3. Simulation
- •5 Introduce adams/Car
- •5.1 What is adams/Car?
- •5.2 What You Can Do with adams/Car
- •5.3 How You Benefit from Using adams/Car
- •6 Introducing Analyses in adams/Car
- •6.1 About adams/Car Analyses
- •6.2 Types of Analyses
- •1. About Suspension Analyses
- •2. About Full-Vehicle Analyses
- •6.3 Introducing Suspension Analyses
- •6.3.1 Suspension Analysis Process
- •Figure 6.1 Suspension Analysis Process
- •6.3.2 Suspension Assembly Roles
- •6.3.3 Setting Suspension Parameters
- •6.3.4 Submitting Suspension Analyses
- •1. Specifying Number of Steps
- •Figure 6.2 Number of Inputs to Steps
- •2. Types of Suspension Analyses
- •6.4 Introducing Full-Vehicle Analyses
- •6.4.1 Full-Vehicle Analysis Process
- •Figure 6.3 Full-Vehicle Analysis Process
- •6.4.2 About the Full-Vehicle Analyses
- •1. Open-Loop Steering Analyses
- •2. Cornering Analyses
- •3. Straight-Line-Behavior Analyses
- •4. Course Analyses
- •5. Driver-Control-File-Driven Analysis (dcf Drive…)
- •6. Quasi-Static Analyses
- •7. Data-Driven Analysis
- •8. Adams/Driver Analyses
- •7 Creating and Simulating Suspensions
- •7.1 Starting adams/Car Standard Interface
- •7.2 Creating Suspension Assemblies
- •7.2.1 Creating a New Front Suspension Subsystem
- •1. Creating the front suspension subsystem:
- •Figure 7.1 Suspension Subsystem
- •2. To save the suspension subsystem
- •7.2.2 Creating a Suspension and Steering Assembly
- •Figure 7.2 Suspension and Steering Assembly
- •7.3 Performing a Baseline Parallel Wheel Travel Analysis
- •7.3.1 Defining Vehicle Parameters
- •7.3.2 Performing the Analysis
- •7.3.3 Animating the Results
- •7.4 Performing a Baseline Pull Analysis
- •7.4.1 Defining a Loadcase File
- •7.4.2 Performing the Analysis
- •7.4.3 Animating the Results
- •7.5 Modifying the Suspension and Steering Subsystem
- •7.5.1 Modifying Hardpoint Locations
- •7.5.2 Saving the Modified Subsystem
- •7.6 Performing an Analysis on the Modified Assembly
- •8 Template Builder Tutorial
- •Figure 8.1 MacPherson front suspension template model
- •8.1 Starting adams/Car Template Builder
- •Environment mdi_acar_usermode expert
- •8.2 Creating Topology for Your Template
- •8.2.1 Creating a Template
- •Figure 8.2 Main Window with Gravity Icon Displayed
- •8.2.2 Building Suspension Parts
- •1. Creating the Control Arm
- •Table 8.1 Wheel Carrier Hardpoints
- •Figure 8.3 Six hardpoints in the main window
- •2. To create the control arm part:
- •3. To create the control arm geometry:
- •8.2.3 Creating the Wheel Carrier
- •1. To create the hardpoints:
- •Table 8.2 Wheel Carrier Hardpoints
- •2. To create the wheel carrier part:
- •3. To add the wheel carrier link geometry:
- •8.2.4 Creating the Strut
- •8.2.5 Creating the Damper
- •1. To create a hardpoint:
- •2. To create the damper:
- •8.2.6 Defining the Spring
- •8.2.7 Creating the Tie Rod
- •8.2.8 Creating the Toe and Camber Variables
- •1. To create toe and camber variables:
- •8.2.9 Creating the Hub
- •1. To create a construction frame:
- •2. To create the hub part:
- •3. To create cylinder geometry for the hub:
- •8.2.10 Creating and Defining Attachments and Parameters
- •1. Defining the Translational Joint
- •2. Defining Control Arm Attachments
- •Figure 8.4 Create bushing Attachment dialog box
- •3. Defining the Strut Attachment
- •4. Defining Wheel Carrier Attachments
- •I Part: ._macpherson.Gel_tierod
- •5. Defining Hub Attachments
- •6. Defining Suspension Parameters
- •8.3 Creating a Suspension Subsystem
- •Table 8.3 Hardpoints To Be Modified
- •9 Creating and Simulating Full Vehicles
- •9.1 A Full-Vehicle Assembly
- •1. To open an assembly:
- •2. To create the Full-Vehicle assembly:
- •9.2 Performing a Single Lane-Change Analysis
- •1. Setting Up the Analysis
- •2. Animating the Results
- •3. Plotting the Results
- •Figure 9.1 Plot of Lateral Acceleration versus Time
- •9.3 Performing a Step Steer Analysis
- •9.4 Performing a Quasi-Static Steady-State Cornering Analysis
- •9.5 Performing a Baseline iso Lane-Change Analysis
- •9.6 Modifying the Full-Vehicle Assembly
- •1. To create a new spring property file:
- •2. To modify the springs:
- •Appendix a: adams/View keyboard shortcuts
- •Table 1. File Operation Shortcuts
- •Table 2. Edit Operation Shortcuts
- •Table 3. Display Operation Shortcuts
- •Viewing Operations Table 4. Viewing Operation Shortcuts
- •Table 5. Drawing Operation Shortcuts
- •Appendix b: adams/Car keyboard shortcuts
- •Table 1. File Operation Shortcuts
- •Table 2. Edit Operation Shortcuts
- •Table 3. Display Operation Shortcuts
- •Viewing Operations Table 4. Viewing Operation Shortcuts
- •References
9.4 Performing a Quasi-Static Steady-State Cornering Analysis
You use an Steady-State Cornering (SSC) analysis to evaluate your full vehicle’s understeer and oversteer characteristics. The SSC analysis holds the turn radius constant and varies the vehicle velocity to produce increasing amounts of lateral acceleration. A control subroutine, CONSUB, controls the analysis and balances all the forces on the body and applies a lateral acceleration to all model parts.
You can now specify the inputs for the full-vehicle analysis and perform a quasi-static maneuver.
To set up the analysis:
1) From the Simulate menu, point to Full-Vehicle Analysis, point to Quasi-Static Maneuvers, and then select Constant Radius Cornering.
2) Run an analysis with the following specifications:
Output Prefix: ssc1
Number of Steps: 30
Final Lateral Accel: .9
Turn Radius: 50
Make sure you set the units pull-down menu for the turn radius to m.
3) Select OK.
ADAMS/Car updates the properties of force entities such as dampers, springs, and bushings, with the values specified in their property files and sets up the vehicle assembly for the maneuver.
The number of steps for the output is directly related to the acceleration increment (that is, acceleration increment = final lateral acceleration / number of steps). ADAMS/Car performs a static analysis at each lateral acceleration increment. When the vehicle reaches the specified final lateral acceleration, the maneuver ends automatically.
9.5 Performing a Baseline iso Lane-Change Analysis
You now perform a baseline ISO lane-change analysis on the new assembly and then plot and view the results. You then modify the spring and analyze the assembly again.
In an ISO lane-change analysis, the Driving Machine drives your full vehicle through a lane-change course as described in ISO-3888: Double Lane Change. You specify the gear position and the desired speed at which to perform the lane change. The analysis stops after the vehicle travels 250 meters; therefore, the time to complete the return maneuver depends on the speed that you input.
To set up the analysis:
1) From the Simulate menu, point to Full-Vehicle Analysis, point to Course Events, and then select ISO Lane Change.
2) Set up the analysis with the following characteristics:
Output Prefix: iso1
Initial Velocity: 100
Gear Position: 3
3) Select OK.
9.6 Modifying the Full-Vehicle Assembly
To change the roll angle versus lateral acceleration vehicle characteristic, modify the spring by creating and assigning a new property file.
A
fter
you create a spring property file, assign the
newly created property file to the front and rear springs.
1. To create a new spring property file:
1) From the Tools menu, select Curve Manager.
2) From the File menu, select New.
3) Verify that Type is set to spring.
4) Select OK.
ADAMS/Car generates a plot of the spring displacement
versus force characteristic in the plot window of the Curve Manager.
5) In the Slope text box, enter 225.
6) Make sure the extension/compressions limits are set to
-100, 100.
7
)
Select Apply.
ADAMS/Car modifies the spring characteristic.
8) In the Free Length text box, enter 300.
9
)
Select Apply.
10) From the File menu, select Save.
11) In the File text box, enter my_spring.
12) Select OK.
13) Close the Curve Manager.
ADAMS/Car returns to the main window.
