- •1 Adams/View Basics 1
- •2 Building Models in adams/View 13
- •3 Simulating Models in adams/View 46
- •4 Examples 53
- •5 Introduce adams/Car 113
- •6 Introducing Analyses in adams/Car 116
- •7 Creating and Simulating Suspensions 129
- •8 Template Builder Tutorial 141
- •SectionⅠ- adams/View
- •1.1.1 Steps in Modeling and Simulating
- •1.1.2 Build Your Model
- •Figure 1.1 Steps in Modeling and Simulating
- •1.1.3 Test and Validate Your Model
- •Validating Simulation Results
- •1.1.4 Refine Your Model and Iterate
- •1.1.5 Customize and Automate adams/View
- •1.2 Working with the adams/View
- •1.2.1 Starting adams/View
- •1.2.2 Adams/View Main Window
- •Figure 1.2 Initial adams/View Window
- •1.2.3 Starting a New Modeling Session
- •Figure 1.3. Welcome Dialog Box
- •1.3 Defining the Modeling Environment
- •1.3.1 Specifying the Type of Coordinate System
- •1. Types of Coordinate Systems
- •Figure 1.4 adams/View Coordinate System
- •2. About Orientation Angles and Rotations
- •3. Setting the Default Coordinate System
- •1.3.2 Setting Units of Measurement
- •1.3.3 Specifying Gravitational Force
- •1.3.4 Specifying Working Directory
- •2 Building Models in adams/View
- •2.1 Creating Parts
- •Figure 2.1 Geometric Modeling Palette and Tool Stack
- •2.1.1 Creating Construction Geometry
- •Table 2.1 Types of construction geometry
- •1. Defining Points
- •2. Defining Coordinate System Markers
- •Figure 2.2 Marker Screen Icons
- •3. Creating Lines and Polylines
- •4. Creating Arcs and Circles
- •5. Creating Splines
- •2.1.2 Creating Solid Geometry
- •Table2.2 adams/View Solid Geometry
- •1. Creating a Box
- •2. Creating Two-Dimensional Plane
- •3. Creating a Cylinder
- •4. Creating a Sphere
- •5. Creating a Frustum
- •6. Creating a Torus
- •7. Creating a Link
- •8. Creating a plate
- •9. Creating an Extrusion
- •2.1.3 Creating Complex Geometry
- •1. Chaining Wire Construction Geometry
- •2. Combining Geometry
- •2.1.4 Adding Features to Geometry
- •2.1.5 Working with Point Masses
- •2.2 Modifying Parts
- •2.2.1 Modifying Rigid Body Geometry
- •2.2.2 Modifying Part Properties
- •2.3 About Constraining Your Model
- •2.3.1 Types of Constraints
- •2.3.2 Accessing the Constraint Creation Tools
- •Figure 2.3 Constraint Palette and Tool Stacks
- •2.3.3 Working with Joints
- •2.3.3.1 Working with Idealized Joints
- •Table1 2.3 Simple joints in adams/View
- •Table1 2.4 Complex joints in adams/View
- •2.3.3.2 Working with Joint Primitives
- •Table1 2.5 Joint Primitives in adams/View
- •2.3.3.3 Working with Higher-Pair Constraints
- •2.3.3.4 Working with Motions generators
- •1. Joint Motion
- •2. Point Motion
- •2.4 Applying Forces to Your Model
- •2.4.1 Accessing the Force Tools
- •Figure 2.4 Create Forces Palette and Tool Stack
- •2.4.2 Constructing Applied Forces
- •2.4.3 Constructing Flexible Connectors
- •2.4.2.1. Working with Bushings
- •2.4.2.2 Working with Translational Spring-Dampers
- •2.4.2.3 Adding a Torsion Spring
- •2.4.2.4 Adding a Massless Beam
- •2.4.2.5 Adding a Field Element
- •3 Simulating Models in adams/View
- •3.1 Types of Simulations
- •3.2 Accessing the Simulation Controls
- •Figure 3.1 Simulation Controls
- •3.3 Performing an Interactive Simulation
- •3.4 Viewing and Controlling Animations
- •3.4.1 About Animating Your Simulation Results
- •3.4.2 Accessing the Animation Controls
- •Figure 3.2 Animation Container and Animation Control Dialog Box
- •3.4.3 Playing Animations
- •Table 3.1 Animation Play Options
- •4 Examples
- •4.1 The Latch Design Problem
- •4.1.1 Introducing the Latch Design Problem
- •Figure 4.1 Physical Model of Hand Latch Design
- •Figure 4.2 adams/View Latch Model
- •4.1.2 Building Model
- •Figure 4.3 Latch in Build Phase
- •1. To start adams/View and Setting Up Your Work Environment
- •2. Creating Design Points
- •Table 4.1 Points Coordinate Locations
- •3. Creating the Pivot
- •4. Creating the Handle
- •5. Creating the Hook
- •Table 4.2 Extrusion Coordinate Values
- •6. Creating the Slider
- •Table 4.3 Points Coordinate Locations
- •7. Connecting the Parts Using Revolute Joints
- •8. Simulating the Motion of Your Model
- •9. Saving Your Database
- •4.1.3 Testing Your First Prototype
- •1. Creating the Ground Block
- •2. Adding a Three-Dimensional Contact
- •3. Adding a Spring
- •4. Creating a Handle Force
- •5. Creating a Measure on the Spring Force
- •6. Creating an Angle Measure
- •Table 4.4 Overcenter_angle Measure Markers
- •Figure 4.4 Graphical Representation of overcenter_angle
- •7. Creating a Sensor
- •8. Saving Your Model
- •9. Simulating Your Model
- •4.1.4 Validating Results Against Physical Test Data
- •1. Importing Physical Test Data
- •2. Creating a Plot Using Physical Test Data
- •Figure 4.5 adams/PostProcessor
- •3. Modifying Your Plot Layout
- •4. Creating a Plot Using Virtual Test Data
- •5. Saving Your Model
- •4.1.5 Refining Your Design
- •1. Creating Design Variables
- •2. Reviewing Design Variable Values
- •4.1.6 Iterating Your Design
- •1. Performing a Manual Study
- •2. Running a Design Study
- •Dv_1 versus Trial plot Overcenter_angle plot
- •Design study report
- •3. Examining the Results of Design Studies
- •Table 4.5 Design Studies Results
- •4.1.7 Optimizing Your Design
- •1. Modifying Design Variables
- •Table 4.6 Design Variable Limits
- •2. Running an Optimization
- •4.2 The Front Suspension Design Problem
- •4.2.1 Introducing the Front Suspension Design Problem
- •Figure 4.6 Physical Model of Front Suspension
- •Figure 4.7 adams/View Front Suspension Model
- •4.2.2 Building Model
- •1. To start adams/View and Setting Up Your Work Environment
- •2. Creating Design Points
- •Table 4.7 Points Coordinate Locations
- •8. Creating the Knuckle
- •9. Creating the Wheel
- •10. Creating the Test_Patch
- •11. Creating the Spring
- •12. Creating the Spherical Joint
- •13. Creating the Fixed Joint
- •14. Creating the Revolute Joint
- •4.2.3 Testing the Front Suspension
- •2. Simulating the Motion of Your Model
- •3. Creating a Measure on the Kingpin_Inclination
- •Fig. The curve of the Kingpin_Inclination vs time
- •4. Creating a Measure on the Kingpin_Caster_Angle
- •5. Creating a Measure on the Front_Wheel Camber_Angle
- •6. Creating a Measure on the Front_Wheel Toe_Angle
- •7. Creating a Measure on the Sideways_Displacement of the Wheel
- •8. Creating a Measure on the Wheel_Travel
- •9. Creating curves on the Front Suspension characteristic
- •4.3 The Full Vehicle Design Problem
- •4.3.1 Creating Chassis Model
- •1. To start adams/View and Setting Up Your Work Environment
- •2. Creating Design Points
- •3. Creating Chassis
- •4.3.2 Creating Front Suspension Model
- •1. Creating Design Points
- •Table 4.8 Points Coordinate Locations
- •2. Creating Front Suspension
- •Figure 4.13 The body model of the chassis and the front suspension
- •3. Creating the Constraint Joint
- •4. Creating the Spring
- •Figure 4.14 The model of the chassis and the front suspension
- •4.3.3 Creating Steering System Model
- •1. Creating Design Points
- •Table 4.9 Points Coordinate Locations
- •2. Creating Steering System
- •Figure 4.15 The model of the steering trapezium
- •Figure 4.16 The model of the steering system
- •3. Creating the Constraint Joint
- •4.3.4 Creating Rear Suspension Model
- •1. Creating Design Points
- •Table 4.10 Points Coordinate Locations
- •2. Creating Rear Suspension
- •Figure 4.17 The model of the rear suspension
- •3. Creating the Constraint Joint
- •Figure 4.18 Creating the Revolute Joint
- •4. Creating the Spring
- •4.3.5 Creating Tire and Road
- •1. Creating Tire Property File
- •Figure 4.20 Analytical and Geometrical Representation of Tire
- •2. Creating Road Data File
- •3. Creating Tire and Road
- •Figure 4.21 The model of Tire
- •Figure 4.22 Full vehicle models
- •4.3.6 Testing the Full Vehicle
- •1. Creating Motion and Torque
- •Figure 4.23 Joint Motion Dialog Box
- •2. Creating curves on the vehicle characteristic
- •3. Simulation
- •5 Introduce adams/Car
- •5.1 What is adams/Car?
- •5.2 What You Can Do with adams/Car
- •5.3 How You Benefit from Using adams/Car
- •6 Introducing Analyses in adams/Car
- •6.1 About adams/Car Analyses
- •6.2 Types of Analyses
- •1. About Suspension Analyses
- •2. About Full-Vehicle Analyses
- •6.3 Introducing Suspension Analyses
- •6.3.1 Suspension Analysis Process
- •Figure 6.1 Suspension Analysis Process
- •6.3.2 Suspension Assembly Roles
- •6.3.3 Setting Suspension Parameters
- •6.3.4 Submitting Suspension Analyses
- •1. Specifying Number of Steps
- •Figure 6.2 Number of Inputs to Steps
- •2. Types of Suspension Analyses
- •6.4 Introducing Full-Vehicle Analyses
- •6.4.1 Full-Vehicle Analysis Process
- •Figure 6.3 Full-Vehicle Analysis Process
- •6.4.2 About the Full-Vehicle Analyses
- •1. Open-Loop Steering Analyses
- •2. Cornering Analyses
- •3. Straight-Line-Behavior Analyses
- •4. Course Analyses
- •5. Driver-Control-File-Driven Analysis (dcf Drive…)
- •6. Quasi-Static Analyses
- •7. Data-Driven Analysis
- •8. Adams/Driver Analyses
- •7 Creating and Simulating Suspensions
- •7.1 Starting adams/Car Standard Interface
- •7.2 Creating Suspension Assemblies
- •7.2.1 Creating a New Front Suspension Subsystem
- •1. Creating the front suspension subsystem:
- •Figure 7.1 Suspension Subsystem
- •2. To save the suspension subsystem
- •7.2.2 Creating a Suspension and Steering Assembly
- •Figure 7.2 Suspension and Steering Assembly
- •7.3 Performing a Baseline Parallel Wheel Travel Analysis
- •7.3.1 Defining Vehicle Parameters
- •7.3.2 Performing the Analysis
- •7.3.3 Animating the Results
- •7.4 Performing a Baseline Pull Analysis
- •7.4.1 Defining a Loadcase File
- •7.4.2 Performing the Analysis
- •7.4.3 Animating the Results
- •7.5 Modifying the Suspension and Steering Subsystem
- •7.5.1 Modifying Hardpoint Locations
- •7.5.2 Saving the Modified Subsystem
- •7.6 Performing an Analysis on the Modified Assembly
- •8 Template Builder Tutorial
- •Figure 8.1 MacPherson front suspension template model
- •8.1 Starting adams/Car Template Builder
- •Environment mdi_acar_usermode expert
- •8.2 Creating Topology for Your Template
- •8.2.1 Creating a Template
- •Figure 8.2 Main Window with Gravity Icon Displayed
- •8.2.2 Building Suspension Parts
- •1. Creating the Control Arm
- •Table 8.1 Wheel Carrier Hardpoints
- •Figure 8.3 Six hardpoints in the main window
- •2. To create the control arm part:
- •3. To create the control arm geometry:
- •8.2.3 Creating the Wheel Carrier
- •1. To create the hardpoints:
- •Table 8.2 Wheel Carrier Hardpoints
- •2. To create the wheel carrier part:
- •3. To add the wheel carrier link geometry:
- •8.2.4 Creating the Strut
- •8.2.5 Creating the Damper
- •1. To create a hardpoint:
- •2. To create the damper:
- •8.2.6 Defining the Spring
- •8.2.7 Creating the Tie Rod
- •8.2.8 Creating the Toe and Camber Variables
- •1. To create toe and camber variables:
- •8.2.9 Creating the Hub
- •1. To create a construction frame:
- •2. To create the hub part:
- •3. To create cylinder geometry for the hub:
- •8.2.10 Creating and Defining Attachments and Parameters
- •1. Defining the Translational Joint
- •2. Defining Control Arm Attachments
- •Figure 8.4 Create bushing Attachment dialog box
- •3. Defining the Strut Attachment
- •4. Defining Wheel Carrier Attachments
- •I Part: ._macpherson.Gel_tierod
- •5. Defining Hub Attachments
- •6. Defining Suspension Parameters
- •8.3 Creating a Suspension Subsystem
- •Table 8.3 Hardpoints To Be Modified
- •9 Creating and Simulating Full Vehicles
- •9.1 A Full-Vehicle Assembly
- •1. To open an assembly:
- •2. To create the Full-Vehicle assembly:
- •9.2 Performing a Single Lane-Change Analysis
- •1. Setting Up the Analysis
- •2. Animating the Results
- •3. Plotting the Results
- •Figure 9.1 Plot of Lateral Acceleration versus Time
- •9.3 Performing a Step Steer Analysis
- •9.4 Performing a Quasi-Static Steady-State Cornering Analysis
- •9.5 Performing a Baseline iso Lane-Change Analysis
- •9.6 Modifying the Full-Vehicle Assembly
- •1. To create a new spring property file:
- •2. To modify the springs:
- •Appendix a: adams/View keyboard shortcuts
- •Table 1. File Operation Shortcuts
- •Table 2. Edit Operation Shortcuts
- •Table 3. Display Operation Shortcuts
- •Viewing Operations Table 4. Viewing Operation Shortcuts
- •Table 5. Drawing Operation Shortcuts
- •Appendix b: adams/Car keyboard shortcuts
- •Table 1. File Operation Shortcuts
- •Table 2. Edit Operation Shortcuts
- •Table 3. Display Operation Shortcuts
- •Viewing Operations Table 4. Viewing Operation Shortcuts
- •References
7.5.2 Saving the Modified Subsystem
In this section, you save the subsystem you just modified.
To save the subsystem:
1) From the File menu, select Save.
Before saving the file, ADAMS/Car asks you if you want to create a backup copy of the file.
2) Select No. This overwrites the subsystem file in your default writable database.
ADAMS/Car saves the subsystem file that you created.
7.6 Performing an Analysis on the Modified Assembly
To determine how the modifications to the suspension subsystem changed the pull on the steering wheel, you perform a pull analysis on the modified suspension and steering assembly. You can use the same loadcase file that you created in Defining a Loadcase File.
To perform the analysis:
1) From the Simulate menu, point to Suspension Analysis, and then select External Files.
The dialog box displays the appropriate loadcase file.
2) In the Output Prefix text box, enter modified.
3) Select the Comment tool.
4) In the Comment Text text box, enter Steering axis moved 25mm outboard.
5) Select OK.
6) Select OK again.
ADAM/Car analyzes the modified suspension and steering assembly.
8 Template Builder Tutorial
This chapter guides you through the process of building a template, creating a suspension subsystem based on the template, and then running various analyses on the subsystem. To build the template, you must use ADAMS/Car Template Builder.
To learn how to create templates, you create a complete MacPherson front suspension template, as shown in Figure 8.1. You then build a suspension using the template you created. Finally, you run kinematic and compliant suspension analyses and compare their results.
Figure 8.1 MacPherson front suspension template model
8.1 Starting adams/Car Template Builder
In this section, you start the ADAMS/Car Template Builder and begin working in template-builder mode.
Before you start ADAMS/Car Template Builder, make sure that your private configuration file, .acar.cfg, shows that you can work in expert-user mode. Your private configuration file is located in your home directory.
To check the user mode:
1) In a text editor, such as jot or notepad, open .acar.cfg.
2) Verify that the following line appears as shown:
Environment mdi_acar_usermode expert
This line sets the user mode for the ADAMS/Car session.
To start ADAMS/Car Template Builder:
1) Start ADAMS/Car Standard Interface, just as you did in Starting ADAMS/Car Standard Interface.
2) From the Tools menu, select ADAMS/Car Template Builder.
8.2 Creating Topology for Your Template
Before you begin to build your template, you must decide what elements are most appropriate for your model. You must also decide which geometries seem most applicable to each part or whether you want any geometry at all. Once you’ve decided, you create a template and create the basic topology for it. Finally, you assemble the model for analysis.
8.2.1 Creating a Template
You must create a template in which to build suspension parts. You should assign to your template a major role as a suspension template, because a major role defines the function the template serves for the vehicle.
To create a template:
1) Start ADAMS/Car Template Builder as explained in Starting ADAMS/Car Template Builder.
2) From the File menu, select New.
The New Template dialog box appears.
3) In the Template Name text box, enter macpherson.
4) Verify that Major Role is set to suspension.
5) Select OK.
A gravity icon appears in the middle of the ADAMS/Car main window as shown in Figure 18. If you don’t see a gravity icon, display the main shortcut menu by right-clicking the main window, and selecting Toggle Icon Visibility. You can also toggle the icon visibility on and off by placing the cursor in the main window and typing a lowercase v.
6) From the main shortcut menu, select Front Iso and Fit - All. Fit your model to view whenever you create an entity outside the current view.
The ADAMS/Car main window should look as follows:
