- •1 Adams/View Basics 1
- •2 Building Models in adams/View 13
- •3 Simulating Models in adams/View 46
- •4 Examples 53
- •5 Introduce adams/Car 113
- •6 Introducing Analyses in adams/Car 116
- •7 Creating and Simulating Suspensions 129
- •8 Template Builder Tutorial 141
- •SectionⅠ- adams/View
- •1.1.1 Steps in Modeling and Simulating
- •1.1.2 Build Your Model
- •Figure 1.1 Steps in Modeling and Simulating
- •1.1.3 Test and Validate Your Model
- •Validating Simulation Results
- •1.1.4 Refine Your Model and Iterate
- •1.1.5 Customize and Automate adams/View
- •1.2 Working with the adams/View
- •1.2.1 Starting adams/View
- •1.2.2 Adams/View Main Window
- •Figure 1.2 Initial adams/View Window
- •1.2.3 Starting a New Modeling Session
- •Figure 1.3. Welcome Dialog Box
- •1.3 Defining the Modeling Environment
- •1.3.1 Specifying the Type of Coordinate System
- •1. Types of Coordinate Systems
- •Figure 1.4 adams/View Coordinate System
- •2. About Orientation Angles and Rotations
- •3. Setting the Default Coordinate System
- •1.3.2 Setting Units of Measurement
- •1.3.3 Specifying Gravitational Force
- •1.3.4 Specifying Working Directory
- •2 Building Models in adams/View
- •2.1 Creating Parts
- •Figure 2.1 Geometric Modeling Palette and Tool Stack
- •2.1.1 Creating Construction Geometry
- •Table 2.1 Types of construction geometry
- •1. Defining Points
- •2. Defining Coordinate System Markers
- •Figure 2.2 Marker Screen Icons
- •3. Creating Lines and Polylines
- •4. Creating Arcs and Circles
- •5. Creating Splines
- •2.1.2 Creating Solid Geometry
- •Table2.2 adams/View Solid Geometry
- •1. Creating a Box
- •2. Creating Two-Dimensional Plane
- •3. Creating a Cylinder
- •4. Creating a Sphere
- •5. Creating a Frustum
- •6. Creating a Torus
- •7. Creating a Link
- •8. Creating a plate
- •9. Creating an Extrusion
- •2.1.3 Creating Complex Geometry
- •1. Chaining Wire Construction Geometry
- •2. Combining Geometry
- •2.1.4 Adding Features to Geometry
- •2.1.5 Working with Point Masses
- •2.2 Modifying Parts
- •2.2.1 Modifying Rigid Body Geometry
- •2.2.2 Modifying Part Properties
- •2.3 About Constraining Your Model
- •2.3.1 Types of Constraints
- •2.3.2 Accessing the Constraint Creation Tools
- •Figure 2.3 Constraint Palette and Tool Stacks
- •2.3.3 Working with Joints
- •2.3.3.1 Working with Idealized Joints
- •Table1 2.3 Simple joints in adams/View
- •Table1 2.4 Complex joints in adams/View
- •2.3.3.2 Working with Joint Primitives
- •Table1 2.5 Joint Primitives in adams/View
- •2.3.3.3 Working with Higher-Pair Constraints
- •2.3.3.4 Working with Motions generators
- •1. Joint Motion
- •2. Point Motion
- •2.4 Applying Forces to Your Model
- •2.4.1 Accessing the Force Tools
- •Figure 2.4 Create Forces Palette and Tool Stack
- •2.4.2 Constructing Applied Forces
- •2.4.3 Constructing Flexible Connectors
- •2.4.2.1. Working with Bushings
- •2.4.2.2 Working with Translational Spring-Dampers
- •2.4.2.3 Adding a Torsion Spring
- •2.4.2.4 Adding a Massless Beam
- •2.4.2.5 Adding a Field Element
- •3 Simulating Models in adams/View
- •3.1 Types of Simulations
- •3.2 Accessing the Simulation Controls
- •Figure 3.1 Simulation Controls
- •3.3 Performing an Interactive Simulation
- •3.4 Viewing and Controlling Animations
- •3.4.1 About Animating Your Simulation Results
- •3.4.2 Accessing the Animation Controls
- •Figure 3.2 Animation Container and Animation Control Dialog Box
- •3.4.3 Playing Animations
- •Table 3.1 Animation Play Options
- •4 Examples
- •4.1 The Latch Design Problem
- •4.1.1 Introducing the Latch Design Problem
- •Figure 4.1 Physical Model of Hand Latch Design
- •Figure 4.2 adams/View Latch Model
- •4.1.2 Building Model
- •Figure 4.3 Latch in Build Phase
- •1. To start adams/View and Setting Up Your Work Environment
- •2. Creating Design Points
- •Table 4.1 Points Coordinate Locations
- •3. Creating the Pivot
- •4. Creating the Handle
- •5. Creating the Hook
- •Table 4.2 Extrusion Coordinate Values
- •6. Creating the Slider
- •Table 4.3 Points Coordinate Locations
- •7. Connecting the Parts Using Revolute Joints
- •8. Simulating the Motion of Your Model
- •9. Saving Your Database
- •4.1.3 Testing Your First Prototype
- •1. Creating the Ground Block
- •2. Adding a Three-Dimensional Contact
- •3. Adding a Spring
- •4. Creating a Handle Force
- •5. Creating a Measure on the Spring Force
- •6. Creating an Angle Measure
- •Table 4.4 Overcenter_angle Measure Markers
- •Figure 4.4 Graphical Representation of overcenter_angle
- •7. Creating a Sensor
- •8. Saving Your Model
- •9. Simulating Your Model
- •4.1.4 Validating Results Against Physical Test Data
- •1. Importing Physical Test Data
- •2. Creating a Plot Using Physical Test Data
- •Figure 4.5 adams/PostProcessor
- •3. Modifying Your Plot Layout
- •4. Creating a Plot Using Virtual Test Data
- •5. Saving Your Model
- •4.1.5 Refining Your Design
- •1. Creating Design Variables
- •2. Reviewing Design Variable Values
- •4.1.6 Iterating Your Design
- •1. Performing a Manual Study
- •2. Running a Design Study
- •Dv_1 versus Trial plot Overcenter_angle plot
- •Design study report
- •3. Examining the Results of Design Studies
- •Table 4.5 Design Studies Results
- •4.1.7 Optimizing Your Design
- •1. Modifying Design Variables
- •Table 4.6 Design Variable Limits
- •2. Running an Optimization
- •4.2 The Front Suspension Design Problem
- •4.2.1 Introducing the Front Suspension Design Problem
- •Figure 4.6 Physical Model of Front Suspension
- •Figure 4.7 adams/View Front Suspension Model
- •4.2.2 Building Model
- •1. To start adams/View and Setting Up Your Work Environment
- •2. Creating Design Points
- •Table 4.7 Points Coordinate Locations
- •8. Creating the Knuckle
- •9. Creating the Wheel
- •10. Creating the Test_Patch
- •11. Creating the Spring
- •12. Creating the Spherical Joint
- •13. Creating the Fixed Joint
- •14. Creating the Revolute Joint
- •4.2.3 Testing the Front Suspension
- •2. Simulating the Motion of Your Model
- •3. Creating a Measure on the Kingpin_Inclination
- •Fig. The curve of the Kingpin_Inclination vs time
- •4. Creating a Measure on the Kingpin_Caster_Angle
- •5. Creating a Measure on the Front_Wheel Camber_Angle
- •6. Creating a Measure on the Front_Wheel Toe_Angle
- •7. Creating a Measure on the Sideways_Displacement of the Wheel
- •8. Creating a Measure on the Wheel_Travel
- •9. Creating curves on the Front Suspension characteristic
- •4.3 The Full Vehicle Design Problem
- •4.3.1 Creating Chassis Model
- •1. To start adams/View and Setting Up Your Work Environment
- •2. Creating Design Points
- •3. Creating Chassis
- •4.3.2 Creating Front Suspension Model
- •1. Creating Design Points
- •Table 4.8 Points Coordinate Locations
- •2. Creating Front Suspension
- •Figure 4.13 The body model of the chassis and the front suspension
- •3. Creating the Constraint Joint
- •4. Creating the Spring
- •Figure 4.14 The model of the chassis and the front suspension
- •4.3.3 Creating Steering System Model
- •1. Creating Design Points
- •Table 4.9 Points Coordinate Locations
- •2. Creating Steering System
- •Figure 4.15 The model of the steering trapezium
- •Figure 4.16 The model of the steering system
- •3. Creating the Constraint Joint
- •4.3.4 Creating Rear Suspension Model
- •1. Creating Design Points
- •Table 4.10 Points Coordinate Locations
- •2. Creating Rear Suspension
- •Figure 4.17 The model of the rear suspension
- •3. Creating the Constraint Joint
- •Figure 4.18 Creating the Revolute Joint
- •4. Creating the Spring
- •4.3.5 Creating Tire and Road
- •1. Creating Tire Property File
- •Figure 4.20 Analytical and Geometrical Representation of Tire
- •2. Creating Road Data File
- •3. Creating Tire and Road
- •Figure 4.21 The model of Tire
- •Figure 4.22 Full vehicle models
- •4.3.6 Testing the Full Vehicle
- •1. Creating Motion and Torque
- •Figure 4.23 Joint Motion Dialog Box
- •2. Creating curves on the vehicle characteristic
- •3. Simulation
- •5 Introduce adams/Car
- •5.1 What is adams/Car?
- •5.2 What You Can Do with adams/Car
- •5.3 How You Benefit from Using adams/Car
- •6 Introducing Analyses in adams/Car
- •6.1 About adams/Car Analyses
- •6.2 Types of Analyses
- •1. About Suspension Analyses
- •2. About Full-Vehicle Analyses
- •6.3 Introducing Suspension Analyses
- •6.3.1 Suspension Analysis Process
- •Figure 6.1 Suspension Analysis Process
- •6.3.2 Suspension Assembly Roles
- •6.3.3 Setting Suspension Parameters
- •6.3.4 Submitting Suspension Analyses
- •1. Specifying Number of Steps
- •Figure 6.2 Number of Inputs to Steps
- •2. Types of Suspension Analyses
- •6.4 Introducing Full-Vehicle Analyses
- •6.4.1 Full-Vehicle Analysis Process
- •Figure 6.3 Full-Vehicle Analysis Process
- •6.4.2 About the Full-Vehicle Analyses
- •1. Open-Loop Steering Analyses
- •2. Cornering Analyses
- •3. Straight-Line-Behavior Analyses
- •4. Course Analyses
- •5. Driver-Control-File-Driven Analysis (dcf Drive…)
- •6. Quasi-Static Analyses
- •7. Data-Driven Analysis
- •8. Adams/Driver Analyses
- •7 Creating and Simulating Suspensions
- •7.1 Starting adams/Car Standard Interface
- •7.2 Creating Suspension Assemblies
- •7.2.1 Creating a New Front Suspension Subsystem
- •1. Creating the front suspension subsystem:
- •Figure 7.1 Suspension Subsystem
- •2. To save the suspension subsystem
- •7.2.2 Creating a Suspension and Steering Assembly
- •Figure 7.2 Suspension and Steering Assembly
- •7.3 Performing a Baseline Parallel Wheel Travel Analysis
- •7.3.1 Defining Vehicle Parameters
- •7.3.2 Performing the Analysis
- •7.3.3 Animating the Results
- •7.4 Performing a Baseline Pull Analysis
- •7.4.1 Defining a Loadcase File
- •7.4.2 Performing the Analysis
- •7.4.3 Animating the Results
- •7.5 Modifying the Suspension and Steering Subsystem
- •7.5.1 Modifying Hardpoint Locations
- •7.5.2 Saving the Modified Subsystem
- •7.6 Performing an Analysis on the Modified Assembly
- •8 Template Builder Tutorial
- •Figure 8.1 MacPherson front suspension template model
- •8.1 Starting adams/Car Template Builder
- •Environment mdi_acar_usermode expert
- •8.2 Creating Topology for Your Template
- •8.2.1 Creating a Template
- •Figure 8.2 Main Window with Gravity Icon Displayed
- •8.2.2 Building Suspension Parts
- •1. Creating the Control Arm
- •Table 8.1 Wheel Carrier Hardpoints
- •Figure 8.3 Six hardpoints in the main window
- •2. To create the control arm part:
- •3. To create the control arm geometry:
- •8.2.3 Creating the Wheel Carrier
- •1. To create the hardpoints:
- •Table 8.2 Wheel Carrier Hardpoints
- •2. To create the wheel carrier part:
- •3. To add the wheel carrier link geometry:
- •8.2.4 Creating the Strut
- •8.2.5 Creating the Damper
- •1. To create a hardpoint:
- •2. To create the damper:
- •8.2.6 Defining the Spring
- •8.2.7 Creating the Tie Rod
- •8.2.8 Creating the Toe and Camber Variables
- •1. To create toe and camber variables:
- •8.2.9 Creating the Hub
- •1. To create a construction frame:
- •2. To create the hub part:
- •3. To create cylinder geometry for the hub:
- •8.2.10 Creating and Defining Attachments and Parameters
- •1. Defining the Translational Joint
- •2. Defining Control Arm Attachments
- •Figure 8.4 Create bushing Attachment dialog box
- •3. Defining the Strut Attachment
- •4. Defining Wheel Carrier Attachments
- •I Part: ._macpherson.Gel_tierod
- •5. Defining Hub Attachments
- •6. Defining Suspension Parameters
- •8.3 Creating a Suspension Subsystem
- •Table 8.3 Hardpoints To Be Modified
- •9 Creating and Simulating Full Vehicles
- •9.1 A Full-Vehicle Assembly
- •1. To open an assembly:
- •2. To create the Full-Vehicle assembly:
- •9.2 Performing a Single Lane-Change Analysis
- •1. Setting Up the Analysis
- •2. Animating the Results
- •3. Plotting the Results
- •Figure 9.1 Plot of Lateral Acceleration versus Time
- •9.3 Performing a Step Steer Analysis
- •9.4 Performing a Quasi-Static Steady-State Cornering Analysis
- •9.5 Performing a Baseline iso Lane-Change Analysis
- •9.6 Modifying the Full-Vehicle Assembly
- •1. To create a new spring property file:
- •2. To modify the springs:
- •Appendix a: adams/View keyboard shortcuts
- •Table 1. File Operation Shortcuts
- •Table 2. Edit Operation Shortcuts
- •Table 3. Display Operation Shortcuts
- •Viewing Operations Table 4. Viewing Operation Shortcuts
- •Table 5. Drawing Operation Shortcuts
- •Appendix b: adams/Car keyboard shortcuts
- •Table 1. File Operation Shortcuts
- •Table 2. Edit Operation Shortcuts
- •Table 3. Display Operation Shortcuts
- •Viewing Operations Table 4. Viewing Operation Shortcuts
- •References
2.1.4 Adding Features to Geometry
You can add features to the solid geometry that you create, including chamfering the edges of the geometry, adding holes and bosses, and hollowing out solids.
Chamfering and Filleting Objects
You can create different types of edges and corners on your solids. These include beveled (chamfered) edges and corners and rounded (filleted) edges and corners. You can think of creating filleted edges as rolling a ball over the edges or corners of the geometry to round them.
When chamfering an edge or corner, you can set the width of the beveling. When filleting an edge or corner, you can specify a start and an end radius for the fillet to create a variable fillet.
Adding Holes and Bosses to Objects
You can create circular holes in solid objects and create circular protrusions or bosses on the face of solid objects. Examples of a hole and boss on a link are shown below.
As you create a hole, you can specify its radius and depth. As you create a boss, you can specify its radius and height.
Hollowing Out a Solid
You can hollow out one or more faces of a solid object to create a shell. As you hollow an object, you can specify the thickness of the remaining shell and the faces to be hollowed.
2.1.5 Working with Point Masses
Point masses are points that have mass but no inertia properties or angular velocities. They are computationally more efficient when rotational effects are not important.
To create or modify a point mass:
1) From the Build menu, point to Point Mass, and then select either New or Modify.
2) If you selected Modify, the Database Navigator appears. Select a point mass to modify.
The Create or Modify Point Mass dialog box appears. Both dialog boxes contain the same options.
3) If you are creating a point mass, enter a name for the point mass.
4) Set the mass of the point mass in the dialog box and adjust its location as desired. By default, ADAMS/View places the point mass in the center of the main window with a mass of 1 in current units.
5)
Select the Comments
tool on the dialog box and enter any comments you want associated
with the point mass.
6) Select OK.
2.2 Modifying Parts
Parts define the objects in your model that can have mass and inertia properties and can move. All forces and constraints that you define in your model act on these parts during a simulation. This chapter explains how to create and modify parts. It contains: modifying rigid body geometry, modifying part properties, setting up materials.
2.2.1 Modifying Rigid Body Geometry
You can modify the geometry of a rigid body using: using hotpoints to graphically modify geometry, using dialog boxes to precisely modify geometry, editing locations using the location table.
Using Hotpoints to Graphically Modify Geometry
You can use hotpoints to resize and reshape the geometry of a rigid body. The hotpoints appear at various locations on the geometry depending on the type of geometry.
Using Dialog Boxes to Precisely Modify Geometry
You can precisely control the size, location, and shape of rigid body geometry using modify dialog boxes. In addition, you can change the name of the geometry as you modify it.
Editing Locations Using the Location Table
To specify the location of points in lines, polylines, splines, extrusions, and revolutions, you can use the Location Table. The Location Table lets you view the points in the geometry and edit them. You can also save the location information to a file or read in location information from a file.
