
- •Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения
- •Часть 1
- •Раздел 1. Элементы общей теории сигналов
- •1.1 Классификация сигналов
- •1.2. Некоторые элементы функционального анализа сигналов
- •1.3 Основы теории ортогональных сигналов
- •Раздел 2. Спектральные представления сигналов
- •2.1. Понятие о спектре периодических и непериодических сигналов
- •2.2 Спектральное представление периодических сигналов
- •2.3 Спектральное представление непериодических сигналов
- •2.4 Теоремы о спектрах
- •2.5 Спектральные представления сигналов с использованием негармонических функций
- •Раздел 3. Сигналы с ограниченным спектром
- •3.1. Некоторые математические модели сигналов с ограниченным спектром
- •3.2 Теорема Котельникова
- •3.3. Узкополосные сигналы
- •3.4. Аналитический сигнал и преобразования Гильберта
- •Раздел 4. Основы корреляционного анализа сигналов
- •4.1. Взаимная спектральная плотность сигналов. Энергетический спектр
- •4.2. Автокорреляционная функция сигналов
- •4.3. Акф дискретного сигнала
- •4.4. Взаимокорреляционная функция двух сигналов
- •Раздел 5. Модулированные сигналы
- •5.1. Сигналы с амплитудной модуляцией
- •5.2 Сигналы с угловой модуляцией
- •5.3. Дискретные формы угловой модуляции
- •5.4 Сигналы с импульсной модуляцией
- •Раздел 6. Основы теории случайных процессов
- •6.1. Случайные процессы. Основные понятия и определения
- •6.2. Характеристики случайных процессов
- •6.3. Моментные функции случайных процессов
- •6.4. Свойства случайных процессов
- •6.5. Функция корреляции двух случайных процессов
- •6.6. Измерение характеристик случайных процессов
- •6.7. Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- •6.8 Типовые модели случайных сигналов
- •6.9 Узкополосные случайные сигналы
- •Раздел 7. Основные элементы цифровой обработки сигналов
- •7.1. Дискретное преобразование Фурье
- •7.2. Быстрое преобразование Фурье
- •7.3 Z-преобразование
- •Раздел 1.Каналы электросвязи
- •Тема1.1 Общие сведения о каналах электросвязи и их классификация
- •1.2 Математические модели каналов электросвязи
- •1.2.1 Математические модели непрерывных каналов связи
- •1.2.2 Математические модели дискретных каналов связи
- •Раздел 2 Основные положения теории передачи информации
- •2.1 Информационные параметры сообщений и сигналов
- •2.2 Взаимная информация
- •Эффективное кодирование дискретных сообщений
- •Тема 2.4. Информация в непрерывных сигналах
- •Тема 2.5. Пропускная способность канала связи
- •Тема 2.6. Теорема к. Шеннона
- •Тема 2.7. Информация в непрерывных сообщениях. Эпсилон-энтропия
- •Раздел 3. Оптимальный приём дискретных сообщений
- •Тема 3.1. Постановка задачи оптимального приёма дискретных сообщений как статистической задачи. Понятие помехоустойчивости
- •3.2. Элементы теории решений
- •3.3. Критерии качества оптимального приёмника
- •3.4 Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- •3.5 Структурное построение оптимального приёмника
- •3.6 Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- •3.8 Потенциальная помехоустойчивость систем с различными видами манипуляции
- •3.9 Приём сигналов с неопределённой фазой (некогерентный приём)
1.2. Некоторые элементы функционального анализа сигналов
В основе функционального анализа сигналов лежит (представление) сигнала как вектора, в специальным образом сконструированном бесконечномерном пространстве.
Пусть
-
множество сигналов. Причина объединения
этих объектов – наличие некоторых
свойств, общих для всех элементов
множества
.
Исследование свойств сигналов, образующих такие множества, можно осуществлять , если выражать одни элементы множества через другие элементы. При этом считается, что множество сигналов наделено определённой структурой. Электрические колебания могут складываться, а также умножаться на произвольный масштабный коэффициент. Это даёт возможность в множествах сигналов ввести структуру линейного пространства.
Множество
сигналов
образует вещественное линейное
пространство, если справедливы следующие
аксиомы:
Любой сигнал
при любых
принимает лишь вещественные значения.
Для любых
и
существует их сумма
, причём
также содержится в
. Операция суммирования коммутативна:
и ассоциативна
.
Для любого сигнала
и любого вещественного числа
определён сигнал
.
Множество
содержит особый нулевой элемент
, такой, что
для всех
.
Линейное пространство, элементами которого являются функции, называется функциональным.
Если математические модели сигналов принимают комплексные значения , то, допуская в аксиоме 3 умножение на комплексное число, можем ввести понятие комплексного линейного пространства.
Как и в обычном трёхмерном пространстве в линейном пространстве сигналов можно выделить специальное подмножество, играющее роль координатных осей. В качестве таких осей используются линейно независимые векторы.
Совокупность
векторов
,принадлежащих
,
является линейно независимой, если
равенство:
(1.1)
возможно лишь в
случае одновременного обращения в нуль
всех числовых коэффициентов
.
Система линейно независимых векторов образует координатный базис в линейном пространстве.
Введём новое понятие, которое по своему смыслу соответствует длине вектора. Это позволит не только определить, что один сигнал больше другого, но и указать на сколько он больше.
Длину вектора
называют его нормой. Линейное пространство
сигналов L
является нормированным , если каждому
вектору
однозначно сопоставлено число
- норма этого вектора.
Аксиомы нормированного пространства
1. Норма неотрицательна,
т.е.
.
Норма
=0
тогда и только тогда, если
2. Для любого числа
справедливо
равенство
.
3. Если
и
-
два вектора изL,
то выполняется неравенство:
Существуют разные способы определения нормы сигналов. Чаще всего полагают, что вещественные аналоговые сигналы имеют норму:
(1.2)
(из двух возможных значений корня выбирается положительное). Для комплексных сигналов норма:
,
где *-символ комплексно-сопряжённой величины.
Квадрат нормы называется энергией сигнала
(1.3)
Такая энергия
выделяется в резисторе с сопротивлением
1Ом, если на его зажимах существует
напряжение
.
Необходимо ввести фундаментальное понятие, которое обобщало бы наше обычное представление о расстоянии между точками в пространстве.
Говорят, что
линейное пространство L
становится метрическим пространством,
если каждой паре элементов
сопоставлено неотрицательное число
,
называемое метрикой, или расстоянием
между этими элементами. Метрика,
независимо от способа её определения,
должна подчиняться аксиомам метрического
пространства:
Метрика рефлексивна
=
=0 при любых
.
Каков бы ни был элемент
, всегда
.
Установим взаимосвязь между нормой и метрикой. Обычно метрику определяют как норму разности двух сигналов :
=
(1.4)
Норму в свою
очередь, можно понимать как расстояние
между выбранным элементом пространства
и нулевым элементом:
.