- •1.Предмет биохимии.Роль и значение биохимии в спорте.
- •2.Общая характеристика углеводов и их классификация. Биологическая роль углеводов
- •3.Определение,классификация и строение липидов, их биологическая роль.Жиры.Строение и функции жиров в организме.
- •6.Белки и их важнейшие функции в организме.
- •7.Аминокислоты.Физико-химические свойства и классификация аминокислот.Заменимые и незаменимые аминокислоты.
- •8.Полипептидная теория строения белков.Уровни структурной организации беокрврй молекулы.Первичная структура белка.
- •9.Вторичная и третичная структуры белка.
- •10.Четвертичная структура белков
- •11.Важнейшие физико-химические свойства белков.
- •12.Определение ферментов.Белковая природа ферментов.Сходство и различие в действии биокатализаторов и обычных катализаторов.
- •14.Механизм действия ферментов.Активность ферментов.
- •16.Номенклатура и классификация ферментов.
- •I. Оксидоредуктазы
- •II. Трансферазы
- •III. Гидролазы
- •25. Сущность, современная теория и функции биологического окисления.
- •29.Анаэробный распад углеводов – гликолиз.Схема и основные этапы реакции.
- •30. Аэробное(полное) окисление углеводов. Основные этапы. Понятие о цикле Кребса.
- •31.Химический состав живых организмов.Водно-минеральный обмен.
- •32.Обмен белков и азотсодержащих веществ в организме.
25. Сущность, современная теория и функции биологического окисления.
Окисление биологическое - совокупность реакций окисления, протекающих во всех живых клетках.
Основная функция О. б. — обеспечение организма энергией в доступной для использования форме. Реакции О. б. в клетках катализируют ферменты, объединяемые в класс оксидоредуктаз. Изучение окисления в организме было начато в 18 в. А. Лавуазье;
О. б. в клетках связано с передачей так называемых восстанавливающих эквивалентов (ВЭ) — атомов водорода или электронов — от одного соединения — донора, к другому — акцептору. У аэробов — большинства животных, растений и многих микроорганизмов — конечным акцептором ВЭ служит кислород. Поставщиками ВЭ могут быть как органические, так и неорганические вещества
Основной путь использования энергии, освобождающейся при О. б., — накопление её в молекулах аденозинтрифосфорной кислоты (АТФ) и др. макроэргических соединений. О. б., сопровождающееся синтезом АТФ из аденозиндифосфорной кислоты (АДФ) и неорганического фосфата, происходит при Гликолизе, окислении α-кетоглутаровой кислоты и при переносе ВЭ в цепи окислительных (дыхательных) ферментов, обычно называют окислительным фосфорилированием.
В процессе дыхания углеводы, жиры и белки подвергаются многоступенчатому окислению, которое приводит к восстановлению основных поставщиков ВЭ для дыхательных флавинов, Никотинамидадениндинуклеотида (НАД),Никотинамидадениндинуклеотидфосфата (НАДФ) и липоевой кислоты. Восстановление этих соединений в значительной мере осуществляется в Трикарбоновых кислот цикле, которым завершаются основные пути окислительного расщепления углеводов (оно начинается с гликолиза), жиров и аминокислот. Помимо цикла трикарбоновых кислот, некоторое количество восстановленных коферментов — ФАД (Флавинадениндинуклеотида) и НАД — образуется при окислении жирных кислот, а также при окислительном дезаминировании глутаминовой кислоты (НАД) и в пентозофосфатном цикле (восстановленный НАДФ).
26.
Путь переноса электронов – дыхательная цепь
Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, окисляются молекулярным кислородом до Н2О с одновременным фосфорилированием АДФ до АТФ. Происходит это, когда водород, отделившийся от НАДН или ФАДН2, передается по цепи, включающей по меньшей мере 5 переносчиков – флавопротеид, кофермент Q и несколько разных цитохромов. В конце цепи электроны соединяются с молекулярным кислородом с образованием аниона О2–. Соединяясь с протонами водорода, эти анионы образуют воду. Промежуточные переносчики водорода претерпевают при этом ряд окислительно-восстановительных реакций. Переносчики сгруппированы таким образом, что в трех пунктах цепи при переходе водородных атомов от одного переносчика к другому, небольшое количество энергии высвобождается и включается в молекулу АТФ. Считается, что на участке НАДН и КоQ (убихинон - вездесущий хинон) осуществляется двухэлектронный перенос, а на участке между цитохромом b и кислородом – одноэлектронный. Молекулы–переносчики электронов, составляющие цепь переноса электронов, сгруппированы в надмолекулярные структуры – дыхательные ансамбли. Эти дыхательные ансамбли встроены в структуру внутренней митохондриальной мембраны. Переносчики, располагающиеся рядом в цепи переноса, ориентируются, вероятно, таким образом, что их простетические группы могут контактировать друг с другом благодаря определенным колебательным и вращательным движениям. Процесс переноса электронов через всю дыхательную цепь, от НАДН к молекулярному кислороду, сопровождается очень большим уменьшением свободной энергии, а именно на 52,7 ккал. Для образования АТФ из АДФ и фосфата необходимо только 7,3 ккал. Очевидно, что уменьшение свободной энергии при переносе одной пары электронов от НАДН до кислорода достаточно велико для того, чтобы обеспечить возможность синтеза нескольких м олекул А ТФ и з А ДФ и ф осфата в с тандартных у словиях п ри условии наличия соответствующего механизма сопряжения. Изменение свободной энергии, сопровождающее перенос пары электронов от НАД*Н к кислороду, можно разбить на 3 части, каждая из которых соответствует определенному участку дыхательной цепи и достаточна для того, чтобы обеспечить фосфорилирование АДФ до АТФ в сопряженной реакции. Эти реакции окислительного фосфорилирования сохраняют около 40% энергии. Окисление всех связанных с НАД субстратов, происходящее в митохондриях за счет молекулярного кислорода, сопровождается образованием 3 молекул АТФ. Была установлена также примерная локализация трех участков дыхательной цепи, в которых происходит запасание энергии: 1) один из флавопротеидов цепи, 2) место, в котором пара электронов переходит от цитохрома b к цитохрому с, 3) место, где пара электронов переходит от цитохрома а к кислороду. Таким образом, дыхательная цепь напоминает каскадное устройство, поставляющее клетке свободную энергию удобными для нее порциями.
27.
Макроэргические соединения
Макроэргические соединения
I Макроэрги́ческие соедине́ния (синоним: высокоэргические соединения, высокоэнергетические соединения)
группа природных веществ, молекулы которых содержат богатые энергией, или макроэргические, связи; присутствуют во всех живых клетках и участвуют в накоплении и превращении энергии. Разрыв макроэргических связей в молекулах М.с. сопровождается выделением энергии, используемой для биосинтеза и транспорта веществ, мышечного сокращения, пищеварения и других процессов жизнедеятельности организма.
Все известные М.с. содержат фосфорильную или ацильную группы.
Важной группой соединений, в которую входят М.с., являются аденозинфосфорные, или адениловые, кислоты — нуклеозиды, содержащие аденин, рибозу и остатки фосфорной кислоты.
Наиболее значительное из них — аденозинтрифосфорная кислота (аденозинтрифосфат, АТФ).
АТФ представляет собой аденозинфосфорную кислоту, содержащую 3 остатка фосфорной кислоты (или фосфатных остатка), служит универсальным переносчиком и основным аккумулятором химической энергии в живых клетках, кофермент многих ферментов
В отдельных биосинтетических реакциях непосредственным источником энергии служат не АТФ, а некоторые другие трифосфонуклеотиды. Однако их нельзя считать первичным источником энергии, поскольку сами они образуются в результате переноса фосфатной или пирофосфатной группы от АТФ. Макроэргическими в молекуле АТФ являются две пирофосфатные связи: между α- и β- и между β- и γ-фосфатными остатками. Все процессы в организме, сопровождающиеся накоплением энергии, в конечном счете ведут к образованию АТФ, который выполняет роль связующего звена между процессами, протекающими с потреблением энергии, и процессами, сопровождающимися выделением и накоплением энергии.
Отщепление фосфатных остатков от молекул АТФ происходит при участии аденозинтрифосфатаз (АТФ-аз) — ферментов класса гидролаз, широко распространенных в клетках всех организмов и обеспечивающих использование энергии АТФ для осуществления различных процессов жизнедеятельности. Группа транспортных АТФ-аз осуществляет активный перенос ионов, аминокислот, нуклеотидов, Сахаров и других веществ через биологические мембраны, создание и поддержание градиентов концентраций ионов (ионных градиентов) по обе стороны биологических мембран. Активный транспорт ионов, обеспечиваемый за счет энергии гидролиза АТФ, лежит в основе биоэнергетики клетки, процессов клеточного возбуждения, поступления в клетку и выведения веществ из клетки и организма, К важнейшим транспортным АТФ-азам, обеспечивающим перенос ионов при гидролизе АТФ, относятся Н+ — АТФ-аза мембран митохондрий, хлоропластов и бактериальных клеток, Са2+— АТФ-аза внутриклеточных мембран мышечных клеток и эритроцитов, а также содержащаяся практически во всех плазматических мембранах Na+, К+АТФ-аза. В результате осуществляемого этими ферментами транспорта ионов против градиента их концентраций на мембране генерируется разность электрических потенциалов. Нарушение функционирования транспортных АТФ-аз (например, выключение АТФ-аз в условиях гипоксии в отсутствие АТФ) ведет к развитию многих патологических состояний.
Расщепление АТФ может сопровождаться не только переносом фосфорильной группы на молекулу-акцептор, как это происходит в реакциях, катализируемых киназами, но и переносом пирофосфатной группы (например, при синтезе пуринов), остатка адениловой кислоты (при активации аминокислот в процессе синтеза белка) или аденозина (биосинтез S-аденозилметионина).
АТФ образуется из аденозиндифосфорной кислоты (АДФ) в результате окислительного фосфорилирования при переносе электронов в митохондриальной электронпереносящей цепи или в результате фосфорилирования на уровне субстрата. Содержание АТФ в клетке непосредственно связано с содержанием других аденозинфосфорных кислот — АДФ и адениловой кислоты (АМФ), образующих систему адениловых нуклеотидов клетки.
Важным макроэргическим соединением, участвующим в ресинтезе АТФ в мышечной ткани, является содержащийся в скелетных мышцах всех позвоночных животных креатин-фосфат — фосфорилированное производное креатина. Обратимое ферментативное взаимодействие креатина с АТФ,играет существенную роль в аккумуляции энергии, необходимой для мышечного сокращения.
Наряду с АТФ к макроэргическим соединениям относятся и другие нуклеозидтрифосфорные кислотыиграющие роль поставщиков энергии в различных биосинтетических процессах и взаимопревращениях углеводов, липидовМакроэргические соединения.
II Макроэрги́ческие соедине́ния (Макро- + греч. ergon работа, действие; син. высокоэргические соединения)
органические соединения, расщепление которых сопровождается выделением большого количества свободной энергии; в М. с. аккумулируется энергия, расходуемая организмом в процессе своей жизнедеятельности.
Макроэргические связи
Макроэргические молекулы — биологические молекулы, которые способны накапливать и передавать энергию в ходе реакции. При гидролизе одной из связей высвобождается более 20 кДж/моль. По химическому строения макроэрги — чаще всего ангидриды фосфорной и карбоновых кислот, а также слабых кислот, какими являются тиолы и енолы. Примеры макроэргических соединений — молекулы АТФ, ГТФ и НАД. Реакционная способность М. с. связана с повышенной электрофильностью (сродством к электрону) атома , что обусловливает, в частности, высокую свободную энергию гидролиза М. с., К М. с. относятся также нуклеозидтри- (или ди)-фосфорные кислоты, пирофосфорная и полифосфорная кислоты, креатинфосфорная, фосфопировиноградная, дифосфоглицериновая кислоты, ацетил- и сукцинилкоферменты А, аминоацильные производные адениловой и рибонуклеиновых кислот и другие. М. с. связаны между собой ферментативными реакциями переноса фосфорильных групп, причём промежуточным продуктом обычно служит АТФ — кофермент многих ферментативных реакций. В целом биологическое значение АТФ и связанных с ней М. с. обусловлено их центральным положением на пересечении путей обмена веществ и энергии: они обеспечивают осуществление различных видов работы, играют ответственную роль в фотосинтезе, биолюминесценции, в биосинтезе белков, жиров, углеводов, нуклеиновых кислот и других природных соединений.
