- •Пособие по органической химии
- •1. Введение в органическую химию.
- •1.1. Краткая история возникновения органической химии и ее развитие.
- •1. 2. Углерод.
- •1. 3. Органические соединения.
- •1. 4. Значение органической химии.
- •2. Классификация органических соединений.
- •2.1. Классификация углеводородов.
- •2.2. Номенклатура органических соединений.
- •2.3. Составление названия органического вещества.
- •Пример.
- •1.1. Доструктурные теории.
- •1.2. Теория химического строения органических соединений а. М, Бутлерова.
- •1.4. Изомерия органических соединений.
- •1.4.1. Структурные изомеры.
- •1.4.2. Пространственные изомеры (стереоизомеры).
- •1.4.3. Оптические изомеры.
- •2. Химическая связь.
- •2.1. Электроотрицательность элементов.
- •2.2. Основные типы химических связей.
- •2.2.1. Ионная связь.
- •2.2.2. Ковалентная связь.
- •2.2.2.1. Свойства ковалентной связи.
- •2.2.2.2. Характеристики ковалентной связи.
- •2.2.2.4. Полярная ковалентная связь.
- •3. Природа ковалентной связи.
- •3.1. Как взаимодействуют атомные орбитали при образовании молекул?
- •3.2. Молекулярные орбитали.
- •3.2.1. Энергия молекулярных орбиталей.
- •3.2.2.Форма молекулярных орбиталей. - и -мо.
- •3.3. Гибридизация атомных орбиталей.
- •3.3.4. Энергия гибридных атомных орбиталей.
- •3.3.5. Гибридизация атома углерода.
- •3.5. Механизмы образования ковалентной связи.
- •3.6. Донорно-акцепторные связи.
- •3.7. Кратные связи.
- •3.8. Электронные формулы молекул
- •3.9. Атомно-орбитальные модели.
- •3.10. Делокализованные -связи. Сопряжение.
- •3.11. Водородные связи (н-связи).
- •3.11.1. Образование водородных связей (на примере спиртов).
- •4.11.2. Влияние водородных связей на свойства веществ.
- •5. Распределение электронной плотности и реакционная способность молекул. Электронные эффекты. Индукционный эффект. Мезомерный эффект.
- •5.1. Индуктивное влияние. Индукционный эффект.
- •5.2. Мезомерный эффект (эффект сопряжения, резонансный эффект).
- •6.1. Основные понятия. Химическая реакция.
- •6.1.1. Энергия активации.
- •6.2. Особенности органических реакций.
- •6.3. Понятие о механизме химической реакции.
- •6.4. Классификация органических реакций.
- •6.4.1. Реакции разложения.
- •6.4.3. Реакции замещения.
- •6.4.4. Реакции изомеризации или перегруппировки.
- •6.4.5. Реакции окисления и восстановления.
- •6.5. Классификация реакций по механизму разрыва связей.
- •6.5.1. Органические ионы и радикалы.
- •6.5.2. Радикальные реакции.
- •6.5.3. Ионные реакции.
- •6.5.3.1 Электрофильные реакции.
- •6.5.3.1.2. Электрофильное замещение
- •6.5.3.2. Нуклеофильные реакции
- •Примеры нуклеофильных реакций
- •6.5.3.2.1. Нуклеофильное замещение:
- •6.5.3.2.2. Нуклеофильное присоединение:
- •7. Производство органических соединений. Природные источники углеводородов. Переработка нефти, каменного угля, природного газа.
- •7.1. Каменный уголь.
- •Продукты коксохимической переработки
- •7.2. Природный газ.
- •7.3. Попутный нефтяной газ.
- •7.4. Нефть.
2.2. Основные типы химических связей.
Основными типами химических связей, отличающихся друг от друга электронным строением и механизмом взаимодействия связываемых атомов, являются ковалентная и ионная связи. Тип связи в значительной степени определяется разностью электроотрицательностей () элементов, участвующих в ее образовании:
= А В,
где А и В - электроотрицательности атомов А и В.
2.2.1. Ионная связь.
Химическая связь, основанная на электростатическом притяжении ионов, называется ионной связью.
Такая связь возникает при большой разнице в электроотрицательностях связываемых атомов ( > 2), когда менее электроотрицательный атом почти полностью отдает свои валентные электроны и превращается в катион, а другой, более электроотрицательный атом, эти электроны присоединяет и становится анионом.
Например, в хлориде натрия NaCl разность электроотрицательностей атомов равна:
= 3.0(Cl) - 0.9(Na) = 2.1.
Атом Na (1 электрон на внешнем уровне) и атом Cl (7 внешних электронов) превращаются в ионы Na+ и Cl- с завершенными внешними электронными оболочками (по 8 электронов), между которыми возникает электростатическое притяжение, т.е. ионная связь.
Иoннaя связь не имеет пространственной направленности, так как каждый ион связан с некоторым числом противоионов, сила действия которых зависит от расстояния (закон Кулона). Поэтому ионно-связанные соединения не имеют молекулярного строения и представляют собой твердые вещества, образующие ионные кристаллические решетки, с высокими температурами плавления и кипения, они высокополярны, часто солеобразны, в водных растворах электропроводны. Соединений с чисто ионными связями практически не существует.
В органических соединениях ионные связи встречаются довольно редко, т.к. атом углерода не склонен ни терять, ни приобретать электроны с образованием ионов.
2.2.2. Ковалентная связь.
В органических соединениях этот тип связи является основным. Ковалентная связь возникает между атомами с относительно малыми различиями в электроотрицательностях ( < 2), например, С и Н, С и О, С и N, C и Cl, N и O и т.п., которые образуют химическую связь за счет общей электронной пары:
Связь, образованная путем обобществления пары электронов связываемых атомов, называется ковалентной
Эта связь может рассматриваться как электростатическое притяжение ядер двух атомов к общей электронной паре. Ковалентная связь, в отличие от ионной, обладает определенной направленностью (от атома к атому), и ее обозначают валентной чертой, символизирующей эту направленность:
Cl-Cl, H-CH3.
Ионная связь точнее отражается знаками зарядов ионов: Na+Cl-.
Для ковалентных соединений характерно молекулярное строение (молекулярные кристаллические решетки), они имеют относительно низкие температуры плавления и кипения. Такие соединения мало полярны, плохо растворимы в воде, их растворы не проводят электрический ток.
2.2.2.1. Свойства ковалентной связи.
Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства органических соединений.
Направленность связи обусловливает молекулярное строение органических веществ и геометрическую форму их молекул. Углы между двумя связями называют валентными.
Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.
Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.
Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Электроны тем подвижнее, чем дальше они находятся от ядер.
Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.
