- •Пособие по органической химии
- •1. Введение в органическую химию.
- •1.1. Краткая история возникновения органической химии и ее развитие.
- •1. 2. Углерод.
- •1. 3. Органические соединения.
- •1. 4. Значение органической химии.
- •2. Классификация органических соединений.
- •2.1. Классификация углеводородов.
- •2.2. Номенклатура органических соединений.
- •2.3. Составление названия органического вещества.
- •Пример.
- •1.1. Доструктурные теории.
- •1.2. Теория химического строения органических соединений а. М, Бутлерова.
- •1.4. Изомерия органических соединений.
- •1.4.1. Структурные изомеры.
- •1.4.2. Пространственные изомеры (стереоизомеры).
- •1.4.3. Оптические изомеры.
- •2. Химическая связь.
- •2.1. Электроотрицательность элементов.
- •2.2. Основные типы химических связей.
- •2.2.1. Ионная связь.
- •2.2.2. Ковалентная связь.
- •2.2.2.1. Свойства ковалентной связи.
- •2.2.2.2. Характеристики ковалентной связи.
- •2.2.2.4. Полярная ковалентная связь.
- •3. Природа ковалентной связи.
- •3.1. Как взаимодействуют атомные орбитали при образовании молекул?
- •3.2. Молекулярные орбитали.
- •3.2.1. Энергия молекулярных орбиталей.
- •3.2.2.Форма молекулярных орбиталей. - и -мо.
- •3.3. Гибридизация атомных орбиталей.
- •3.3.4. Энергия гибридных атомных орбиталей.
- •3.3.5. Гибридизация атома углерода.
- •3.5. Механизмы образования ковалентной связи.
- •3.6. Донорно-акцепторные связи.
- •3.7. Кратные связи.
- •3.8. Электронные формулы молекул
- •3.9. Атомно-орбитальные модели.
- •3.10. Делокализованные -связи. Сопряжение.
- •3.11. Водородные связи (н-связи).
- •3.11.1. Образование водородных связей (на примере спиртов).
- •4.11.2. Влияние водородных связей на свойства веществ.
- •5. Распределение электронной плотности и реакционная способность молекул. Электронные эффекты. Индукционный эффект. Мезомерный эффект.
- •5.1. Индуктивное влияние. Индукционный эффект.
- •5.2. Мезомерный эффект (эффект сопряжения, резонансный эффект).
- •6.1. Основные понятия. Химическая реакция.
- •6.1.1. Энергия активации.
- •6.2. Особенности органических реакций.
- •6.3. Понятие о механизме химической реакции.
- •6.4. Классификация органических реакций.
- •6.4.1. Реакции разложения.
- •6.4.3. Реакции замещения.
- •6.4.4. Реакции изомеризации или перегруппировки.
- •6.4.5. Реакции окисления и восстановления.
- •6.5. Классификация реакций по механизму разрыва связей.
- •6.5.1. Органические ионы и радикалы.
- •6.5.2. Радикальные реакции.
- •6.5.3. Ионные реакции.
- •6.5.3.1 Электрофильные реакции.
- •6.5.3.1.2. Электрофильное замещение
- •6.5.3.2. Нуклеофильные реакции
- •Примеры нуклеофильных реакций
- •6.5.3.2.1. Нуклеофильное замещение:
- •6.5.3.2.2. Нуклеофильное присоединение:
- •7. Производство органических соединений. Природные источники углеводородов. Переработка нефти, каменного угля, природного газа.
- •7.1. Каменный уголь.
- •Продукты коксохимической переработки
- •7.2. Природный газ.
- •7.3. Попутный нефтяной газ.
- •7.4. Нефть.
Пример.
Назовем следующее соединение.
5 4 3 2 1
СН2=СН-СН2-СН(ОН)-СН3
Выбор цепи однозначен, следовательно, корень слова – пент; далее следует суффикс – ен, указывающий на наличие кратной связи;
Порядок нумерации обеспечивает старшей характеристической группе (-ОН) наименьший номер;
Полное название соединения заканчивается суффиксом, обозначающим старшую группу (в данном случае суффикс –ол указывает на наличие гидроксильной группы); положение двойной связи и гидроксильной группы указывается цифрами.
Следовательно, приведенное соединение называется пентен-4-ол-2.
Тема № 1. Общие вопросы органической химии. Теория химического строения органических веществ. Электронная природа химических связей.
1.Теория химического строения органических веществ А.М. Бутлерова.
1.1. Доструктурные теории.
Теория радикалов.
Еще в XVIII столетии ученые заметили, что существуют определенные сочетания атомов, как бы переходящие в неизменном виде из одного соединения в другое. Примером может служить группа циана CN, которая входит в состав многих солей (KCN, K3Fe(CN)6 и другие), играя роль в них аниона. Эта группа может входить в состав органических соединений.
В 30 – х годах XIX века Ю. Либих и Ф. Велер, исследуя химические превращения жидкости, выделенной из масла горького миндаля, установили, что из нее можно получить целый ряд соединений, в состав которых входит группа атомов C7H5O, названная ими бензоилом: C7H5OH – водородистый бензоил, C7H5OCl – хлористый бензоил, C7H5O *ОН – «гидрат окиси бензоила» (бензойная кислота).
Факты подобного рода послужили основой для создания теории радикалов, развитой И. Берцелиусом. Теорию радикалов называют дуалистической (от греческого «дуалис» - два, двойственный), поскольку она подходила к органическому веществу как комбинации двух частей – органического радикала и простого неорганического (обычно кислородсодержащего) остатка. Неорганический остаток И. Берцелиус считал электроотрицательной частью, органический радикал – положительной частью, проводя, таким образом, аналогию с неорганическими соединениями. Органическую химию И. Берцелиус определял как «химию сложных радикалов», считая их «подлинными элементами органической химии».
Теория радикалов правильно отмечала одну из особенностей органических веществ – существование устойчивых группировок атомов - радикалов, переходящих в неизменном виде из одного соединения в другое. Ошибочным в данной теории было представление, что органические радикалы абсолютно неизменны и могут существовать сами по себе, подобно простым веществам неорганической природы. Упрощенными были и представления об электрической полярности отдельных частей органической молекулы.
Теория радикалов не могла полностью объяснить реакции замещения в органической химии, при которых хлор (элемент, обладающий высокой электроотрицательностью) занимает в органических соединениях место электроположительного водорода, входящего в состав радикала, а свойства при этом практически не менялись.
Теория типов.
В 40- х годах XIX века О. Лоран и Ш. Жерар предложили теорию типов. Все органические соединения по теории типов считали производными простейших неорганических веществ – водорода, хлороводорода, воды, аммиака:
Классификация органических соединений по теории типов, как и употреблявшиеся типические формулы конкретных соединений (см схему выше), близки современным. Однако по теории типов формулы органических соединений выражают не внутреннее строение молекул, а лишь способы образования и реакции вещества. Ш. Жерар прямо говорил с этим, что химическая формула – это только краткая запись его реакций. Теория типов допускала множество рациональных типов для одного и того же вещества в зависимости от того, какие реакции хотели этими формулами выразить.
Постепенно, после долгих споров теория типов сменила теорию радикалов.
Важным этапом развития химии явилось создание понятия о валентности. Эта заслуга принадлежит Э. Франкленду. Свои выводы о валентности целого ряда элементов он сделал на основании изучения металлоорганических соединений, таких как цинкдиметил Zn(CH3)2, триэтилсурьма Sb(C2H5)3. цинк в этом соединении двухвалентен, а сурьма трехвалентна.
Развивая учение о валентности, А. Кекуле в 1858 году разработал представление о четырехвалентности углерода. А. Кекуле стал разбивать изображаемые в типических формулах остатки на еще более мелкие группировки, выводимые в конечном итоге из простейшего органического вещества – метана.
В 1858 году А. Купер обратил внимание на то, что атомы углерода в органических соединениях могут затрачивать свою валентность не только на связь с иными элементами, но и друг с другом. А. Купер одновременно с А. Кекуле указал на способность углерода образовывать цепи.
Однако по вопросу о значении формул как А. Кекуле, так и А. Купер целиком оставались на позиции теории типов.
