Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГЛАВА V. Элементы комбинаторики (c 101-119).doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.27 Mб
Скачать

Глава V . Элементы комбинаторики

Комбинаторика – раздел математики, посвященный решению задач выбора и расположения элементов некоторого, обычно конечного, множества в соответствии с заданными правилами. Другими словами, объектом изучения комбинаторики являются различные соединения (комбинации) элементов конечных множеств. Рассматривают соединения, как без повторяющихся элементов, так и соединения с повторяющимися элементами. В первом случае их называют соединениями без повторений, во втором – соединениями с повторениями. Необходимость рассмотрения таких соединений возникает как в алгебре, так и в других дисциплинах (теории вероятностей и математической статистике, криптографии, информатике и др.). Больше внимание здесь будет уделено соединениям без повторений.

§1. Основные правила комбинаторики

Условимся множество , содержащее элементов, называть, для краткости, -множеством. Напомним, что этот факт можно записать в виде .

1. Правило суммы. Рассмотрим следующую комбинаторную задачу: сколько элементов содержится в объединении m-множества и n-множества ? Ответ на этот вопрос очевиден в случае, когда множества и не пересекаются, т.е. . В этом случае множество содержит элементов. Таким образом, справедливо следующее утверждение: если множества и конечны, причем , то

(1)

В комбинаторике это очевидное утверждение называют правилом суммы и формулируют следующим образом:

Правило суммы. Если элемент а можно выбрать способами, а элемент bm способами, причем любой способ выбора а отличается от любого способа выбора b, то выбор «а или b» можно сделать способами.

Сложнее обстоит дело, если пересечение множеств и не пусто. Например, объединение множеств = и = состоит из семи элементов: = , а не из 6 + 4 = 10 элементов. Это объясняется тем, что элементы принадлежат обоим множествам и , а в объединение входят лишь один раз. Поэтому из суммы 6 + 4 приходится вычесть число 3, т.е. число элементов пересечения . Вообще для любых конечных множеств и имеет место равенство:

. (2)

Таким образом, число элементов в объединении двух конечных множеств равно сумме чисел элементов в каждом из них, уменьшенной на число элементов в пересечении этих множеств.

Аналогично рассматривается вопрос о числе элементов в объединении нескольких конечных множеств . Если ограничимся только случаем, когда эти множества попарно не пересекаются (т.е. если при ), то с помощью математической индукции по числу к легко убедиться в справедливости равенства

(3)

Сложнее обстоит дело, если некоторые пары множества совокупности могут иметь непустые пересечения. Нам этот случай не понадобится и мы его опустим. Любопытный читатель может либо прочитать о нем в любой книге по комбинаторике, либо попытаться разобраться самостоятельно.

2. Правило произведения. Рассмотрим теперь следующую комбинаторную задачу: сколько элементов содержится в декартовом произведении m-множества A на n-множество В?

Ответ на этот вопрос дает следующее утверждение.