- •Isbn 5-06-004038-0 © гуп «Издательство «Высшая школа», 2001
- •Часть 1 7
- •Часть 2 85
- •Часть 3 121
- •Часть 4 161
- •Часть 5 автоматизация производства эвм 240
- •Предисловие
- •Часть 1 конструирование средств измерительной и вычислительнойтехники
- •1. Общие сведения
- •1.1. Основные понятия и определения
- •1.2. Факторы, влияющие на работоспособность вт
- •1.3. Показатели конструкции вт
- •2. Разработка вт
- •2.1. Организационные вопросы разработки вт
- •2.2. Единая система конструкторской документации
- •3. Требования, предъявляемые к конструкции
- •3.1. Конструктивная преемственность
- •3.2. Технологичность
- •3.3. Точность
- •3.3.1. Выбор конструкций и ограничение их разнообразия
- •3.3.2. Ошибки параметров конструкций
- •3.3.3. Расчет отклонений параметров конструкции
- •3.3.4. Вероятностный метод расчета отклонения параметров
- •3.4. Надежность
- •3.4.1.Критерии надежности
- •3.4.2. Методы обеспечения и повышения надежности
- •3.4.3. Расчет надежности
- •3.5. Экономичность
- •3.6. Эргономичность и эстетичность
- •3.7. Патентоспособность
- •4. Защита конструкций от внешних воздействий
- •4.1. Механические воздействия
- •4.1.1. Методы расчета и анализа вибраций
- •4.1.2. Метод расчета на виброустойчивость
- •4.1.3. Амортизация нестационарных вт
- •4.2. Охлаждение вт
- •4.2.1. Передача теплоты в электронных устройствах
- •4.2.2. Основные теплофизические задачи, возникающие при конструировании вт
- •4.3. Атмосферные воздействия
- •4.3.1. Защита покрытиями
- •4.3.2. Защита герметизацией
- •4.4. Воздействия электрического характера
- •4.4.1. Причины возникновения помех
- •4.4.2. Электрические связи между элементами в вт
- •4.4.3. Помехи при соединении элементов вт «короткими» связями
- •4.4.4. Помехи при соединении элементов «длинными» связями
- •4.4.5. Помехи в каналах связи
- •4.4.6. Методы снижения паразитных связей
- •4.4.7. Методы защиты от помех
- •4.5. Временная нестабильность
- •5. Автоматизированное конструирование вт
- •5.1. Современное состояние сапр электронных устройств
- •5.2. Функциональные возможности и структура системы p-cad
- •5.3. Организация работы с системой p-cad
- •1.2. Принципы создания сапр
- •1.3. Виды обеспечения сапр
- •1.4. Классификация сапр
- •1.5. Стадии проектирования
- •1.6. Способы организации процесса проектирования
- •2. Математическое обеспечение сапр
- •2.1. Математические модели
- •2.2. Методика составления математической модели
- •2.3. Методы получения моделей элементов вычислительных систем
- •3. Математические модели функционально-логического этапа проектирования вс
- •3.1. Математические модели схем
- •3.1.1. Модель схемы в виде неориентированного мультиграфа
- •3.1.2. Модель схемы в виде ориентированного мультиграфа
- •3.1.3. Представление схемы гиперграфом и ультраграфом
- •3.2. Математические модели монтажного пространства
- •3.3. Последовательные алгоритмы структурного синтеза
- •3.5. Задача размещения
- •3.6. Задача трассировки
- •3.7. Выбор критериев оптимальности
- •3.7.1. Частные критерии
- •3.7.2. Аддитивные критерии
- •3.7.3. Мультипликативные критерии
- •3.7.4. Минимаксные критерии
- •3.8. Оценка значений весовых коэффициентов
- •Заключение
- •Часть 3 техническое, программное и интеллектуальное обеспечение сапр вычислительных систем
- •1.Техническое обеспечение сапр
- •1.1.Организация технических средств сапр
- •1.2. Режимы работы ктс сапр
- •1.3. Технические средства машинной графики
- •1.4. Специализированные сопроцессоры
- •1.5. Речевые устройства для оперативной связи проектировщика
- •1.6. Вычислительные сети сапр
- •2. Информационное обеспечение сапр
- •2.1.Базы данных в сапр
- •2.2. Проектирование баз данных
- •2.3. Модели данных
- •2.3.1. Реляционная модель данных
- •2.3.2. Иерархическая модель данных
- •2.3.3. Сетевая модель данных
- •2.4. Система управления базами данных
- •2.4.1. Категории баз данных
- •2.4.2. Сетевая база данных
- •2.4.3. Реляционная база данных
- •3. Принципы организации сапр с элементами искусственного интеллекта
- •3.1. Анализ современных требований к сапр
- •3.2. Архитектура интеллектуальных сапр
- •3.3. Количественные и качественные характеристики интеллектуальных сапр
- •3.4. Моделирующая интеллектуальная сапр
- •3.5. Синтезирующая интеллектуальная сапр
- •3.6. Методы структурного и параметрического синтеза
- •3.6.1. Общая характеристика методов синтеза
- •3.6.2. Методы структурного синтеза
- •3.6.3. Параметрический синтез
- •Заключение
- •Часть 4 технология, экология и надежность эвм
- •1. Проектирование технологических процессов
- •1.1. Понятия и определения технологических процессов
- •1.2. Порядок проектирования технологического процесса
- •1.2.1. Виды технологических процессов
- •1.2.2. Виды технологических баз
- •1.2.3. Виды контроля
- •1.3. Технологическая документация
- •1.4. Технологическая подготовка производства
- •1.4.1.Технологичность элементов и деталей эвм
- •2. Методы обработки изделий эвм
- •2.1. Электроэрозионные методы обработки
- •2.1.1. Электроискровая обработка
- •2.1.2. Метод электроискровой обработки непрофилированным (проволочным) электродом
- •2.1.3. Анодно-механическая обработка
- •2.2. Лучевые методы обработки
- •2.2.1. Электронно-лучевая обработка
- •2.2.2. Светолучевая обработка
- •2.3. Обработка ультразвуком
- •2.4. Электрохимическая обработка
- •2.4.1. Анодно-гидравлическая обработка в проточном электролите
- •2.5. Обработка плазмой
- •3. Защитные покрытия
- •3.1. Виды покрытий
- •3.2. Металлические покрытия
- •3.3. Лакокрасочное покрытие
- •3.4. Контроль покрытий
- •4. Технология производства печатных плат
- •4.1. Механическая обработка печатной платы
- •4.2. Получение рисунка печатной платы
- •4.2.1. Фотопечать
- •4.2.2. Трафаретная печать (сеткографический метод)
- •5. Экология производства эвм
- •5.1. Источники и виды загрязнений окружающей среды при производстве эвм
- •5.1.1. Сточные воды при производстве эвм
- •5.1.2. Энергетические загрязнения
- •5.2. Основные меры по защите окружающей среды
- •5.3. Защита атмосферы
- •5.4. Очистка сточных вод
- •5.5. Очистные сооружения предприятия,
- •5.6. Обработка твердых отходов
- •6. Обеспечение надежности эвм и систем
- •6.1. Основные характеристики и параметры надежности
- •6.2. Структурная надежность
- •6.3. Структурные методы повышения надежности эвм
- •6.4. Информационные методы повышения надежности эвм
- •6.5. Повышение надежности передачи информации в эвм с помощью волоконно-оптических линий связи
- •Часть 5 автоматизация производства эвм
- •1. Основные элементы автоматизированного производства
- •1.1. Системные принципы создания гибких автоматизированных производств, общие направления автоматизации
- •1.2. Микропроцессорные вычислительные устройства в сенсорных системах роботов
- •1.2.1. Методы и алгоритмы видеоанализа
- •1.2.2. Программно-аппаратные средства реализации систем технического зрения на базе микроЭвм
- •1.2.3. Специализированные видеопроцессоры для обработки и анализа изображений -
- •Заключение
- •1.3. Промышленные роботы микроэлектроники
- •1.3.1. Манипуляторы промышленных роботов
- •2. Локальные вычислительные сети в гап
- •2.1. Архитектура вычислительных систем для гап
- •2.2. Принципы построения малых лвс
- •2.3. Основы моделирования лвс
- •2.4. Общий критерий качества
- •2.5. Гибкие технологические системы изготовления и сборки элементов эвм
- •2.5.1. Производственные системы изготовления печатных плат
- •2.5.2. Производственная система изготовления радиоэлектронных модулей
- •2.5.3. Промышленные роботы для автоматизированного производства
- •3. Микропроцессорные вычислительные устройства в системах управления пр
- •3.1. Системы управления пр
- •3.1.1. Классификация системы управления пр
- •3.2. Архитектура управляющих вычислительных комплексов
- •3.3. Программирование вычислительных устройств в ртк 3.3.1. Методы программирования пр
- •3.3.2. Примеры робото-ориентированных языков программирования
- •Список литературы
3.2. Технологичность
Под технологичностью конструкции следует понимать такое сочетание конструктивно-технологических требований, которое обеспечивает наиболее простое и экономичное производство изделий при соблюдении всех технических и эксплуатационных требований. Стандартами Единой системы технологической подготовки производства (ЕСТПП), ГОСТ 14.201—83, перед разработкой технологических процессов предусмотрена обязательная отработка конструкций на технологичность. Основная задача такой отработки на технологичность состоит в повышении производительности труда, снижении материальных затрат и сокращении времени на проектирование, технологическую подготовку производства, изготовление, техническое обслуживание и ремонт изделия при обеспечении его высокого качества. Отработка конструкции на технологичность ведется конструкторами и технологами на всех стадиях разработки и изготовления изделия.
Главными факторами, определяющими требование к технологичности конструкции изделия, являются: вид изделия (деталь, сборочная единица, комплекс, комплект), который определяет его главные конструктивно-технологические признаки; объем выпуска и тип производства, характеризующие степень технологического оснащения, механизации и автоматизации технологических процессов.
Оценка технологичности конструкции может быть качественной и количественной. Качественная оценка характеризуется технологичностью конструкции обобщенно, на основании опыта специалистов-исполнителей (экспертов). Количественная оценка выражается показателем, численное значение которого характеризует степень удовлетворения требованиям технологичности конструкции. Количественная оценка рациональна только в зависимости от признаков, которые существенно влияют на технологичность рассматриваемой конструкции.
Для оценки технологичности конструкции используются относительные частные показатели Ki и комплексный показатель K, рассчитываемый по частным показателям с учетом коэффициентов i , характеризующих весовую значимость частных показателей, т. е. степень их влияния на трудоемкость изготовления изделия.
Значения Ki находятся в пределах 0 < Ki 1, при этом рост показателя соответствует более высокой технологичности изделия. Коэффициент i зависит от порядкового номера основных показателей технологичности, ранжированная последовательность которых устанавливается экспертно, и рассчитывается по формуле
i = i/2i-1
где i—порядковый номер показателя в ранжированной последовательности.
Все сборочные единицы ВТ в зависимости от конструктивно-технологических особенностей условно разбиваются на следующие группы:
электронные блоки (логические, аналоговые, индикаторные, блоки оперативной памяти, генераторы сигналов, приемно-усилительные блоки и т. д.);
радиотехнические блоки (вторичные и стабилизированные источники питания, выпрямители и т. д.);
электромеханические и механические блоки (механизмы привода, кодовые преобразователи, волноводные блоки и т. д.);
коммутационно-распределительные блоки (коммутаторы, распределительные коробки, переключатели и т. д.).
Расчет комплексных показателей технологичности каждой группы изделий (сборочных единиц) ведут по конструктивным и технологическим базовым показателям, состав которых (не более семи) для каждого изделия согласно ГОСТ 14.201—83 устанавливается отраслевыми документами.
В качестве примера рассмотрим состав базовых показателей по весовой значимости и расчетные формулы для серийного производства электронных блоков.
1. Коэффициент использования микросхем
Kимс = Нимс / Нэрэ , 1 = 1,
где Нимс — количество микросхем;
Нэрэ — общее количество элементов радиоэлектроники (ЭРЭ).
2. Коэффициент автоматизации и механизации монтажа
Кам = Нам / Нм , 2 = 1,
где Нам — число монтажных соединений, которые выполняются механизированным или автоматизированным способом;
Нм — общее число монтажных соединений.
3. Коэффициент автоматизации и механизации подготовки ЭРЭ к монтажу
Кмп эрэ = Нмп эрэ / Нэрэ , 3 = 0,75,
где Нмп эрэ — количество ЭРЭ, которые подготавливаются к монтажу механизированным или автоматизированным способом (в это число включаются ЭРЭ, не требующие специальной подготовки к монтажу — микросхемы, реле, разъемы и т. д.).
4. Коэффициент автоматизации и механизации операций контроля и настройки электрических параметров
Кмкн = Нмкн / Нкн , 4 = 0,5,
где Нмкн — число операций контроля и настройки, выполняемых механизированным или автоматизированным способом;
Нкн — общее число операций контроля и настройки.
5. Коэффициент повторяемости ЭРЭ
Кповт эрэ = 1 – Нт эрэ / Нэрэ , 5 = 0,31,
где Нт эрэ — количество типоразмеров ЭРЭ в изделии.
6. Коэффициент применяемости ЭРЭ
Кп эрэ = 1 – Нт ор эрэ / Нт эрэ, 6 = 0,187,
где Нт ор эрэ— количество типоразмеров оригинальных ЭРЭ в изделии.
7. Коэффициент прогрессивности формообразования деталей
Кф = Дпр / Д, 7 = 0,11,
где Дпр— число деталей, заготовки которых или сами детали получены прогрессивными методами формообразования (штамповкой, прессованием, порошковой металлургией, литьем по выплавляемым моделям, под давлением, пайкой, сваркой, склеиванием, из профилированного материала);
Д — общее число деталей.
Технологичность конструкции изделия оценивается комплексным показателем, определяемым на основе базовых показателей
,
где Кi — расчетный базовый показатель соответствующего класса блоков;
i — весовой коэффициент;
i — порядковый номер показателя;
n — число базовых показателей.
Уровень технологичности разрабатываемого изделия при известном нормативном Kн оценивают отношением достигнутого комплексного показателя к нормативному. Это отношение должно удовлетворять условию
K / Kн 1
Нормативный комплексный показатель технологичности электронных блоков АСУ и ВТ Kн = 0,5 – 0,8.
В качестве изделий-аналогов для определения нормативного комплексного показателя принимают наиболее современные конструкции, разработанные с учетом новейших достижений науки и техники и выпускаемые серийно. К основным способам повышения технологичности конструкции изделий можно отнести:
сокращение числа деталей изделия без усложнения их конструкции;
максимальное использование деталей и сборочных единиц, ранее освоенных в производстве;
расчленение изделий на возможно большее число самостоятельно собираемых и взаимозаменяемых сборочных единиц;
соответствие параметров точности изготовления, и качества поверхности деталей эксплуатационным требованиям изделий;
компоновку, обеспечивающую удобство и простоту сборки изделия, а также доступ к его элементам при монтаже и ремонте;
широкое внедрение деталей, изготавливаемых из дешевых и недефицитных материалов, а также изготавливаемых прогрессивным методом.
