- •Краткий конспект лекций
- •Тема 1. Основные понятия корпоративных информационных систем
- •1.1. Организационная и функциональная структура объекта управления
- •1.2. Информационные системы
- •1.3. Архитектура ис, типы архитектур
- •Тема 2. Информационные ресурсы корпоративных информационных систем
- •2.1 Информационная модель организации
- •2.1 Информационные ресурсы кис
- •Тема 3. Техническое обеспечение кис
- •3.2 Оборудование локальных сетей
- •3.3 Требования к техническому обеспечению кис
- •При проектировании кис формируется документ, в котором описывается комплекс используемых в системе технических средств, включающий:
- •Тема 4 Сетевое обеспечение корпоративных информационных систем
- •4.1 Компьютерные сети
- •В настоящее время развиваются городские сети или сети мегополисов (man, Metropolitan Area Networks), предназначенные для обслуживания территории крупного города.
- •Электронная почта (e-mail);
- •4.2 Корпоративные сети
- •Объединение офисных сетей с использованием беспроводного оборудования (рис. 4.3) предоставляет следующие преимущества:
- •Использование сети Интернет в качестве транспортной среды передачи данных при построении кс предприятия (рис. 4.4) предоставляет следующие преимущества:
- •Объединение локальных сетей предприятия в единую корпоративную сеть на основе арендованных каналов передачи данных (рис. 4.5) приносит следующие преимущества:
- •4.3 Интернет/Интранет-технологии
- •4.4 Перспективы развития телекоммуникационных и сетевых технологий
- •Тема 5. Программное обеспечение кис Глава 5. Программное обеспечение кис
- •5.1 Требования к программному обеспечению
- •5.2 Прикладное программное обеспечение кис
- •5.2.1 Рынок прикладного по и его сегментация
- •5.2.2 Средства разработки приложений
- •5.2.3 Системное программное обеспечение
- •5.2.4 Программное обеспечение промежуточного слоя
- •5.3 Интеграция ис
- •Описия сервисов
- •Р сервисов
- •Тема 6. Системы искусственного интеллекта
- •6.1 Основные понятия искусственного интеллекта
- •6.3 Интеллектуальный анализ данных. Управление знаниями
- •6.5 Системы поддержки принятия решений
- •Тема 7. Обеспечение безопасности кис
- •Глава 7 Обеспечение безопасности информационных систем
- •7.1 Основы информационной безопасности
- •7.2 Критерии оценки информационной безопасности
- •7.3 Классы безопасности информационных систем
- •7.4 Политика безопасности
- •7.5 Угрозы информационной безопасности
- •7.6 Методы и средства защиты информации
- •Тема 8. Проектирование корпоративных информационных систем
- •8 Проектирование корпоративной информационной системы
- •8.1 Жизненный цикл корпоративной информационной системы
- •8.2 Основные понятия проектирования кис
- •8.3 Подходы к проектированию ис
- •8.5 Стандартизация и сертификация информационных технологий
Тема 2. Информационные ресурсы корпоративных информационных систем
2.1 Информационная модель организации
С позиций кибернетики процесс управления системой, как направленное воздействие на элементы системы для достижения цели, можно представить в виде информационного процесса, связывающего внешнюю среду, объект и систему управления. При этом внешняя среда и объект управления информируют систему управления о своем состоянии, система управления анализирует эту информацию, вырабатывает управляющее воздействие на объект управления, отвечает на изменения внешней среды и при необходимости модифицирует цель и структуру всей системы (рис. 2.1).
Рисунок 2.1 – Схема управления экономическим объектом
О
бъект
и система управления между собой и с
внешней средой связаны через информационные
потоки – совокупность, циркулирующей
информации как внутри системы, так и
между системой и внешней средой,
необходимой для управления предприятием.
Информационный поток характеризуется
маршрутом движения информации от
источника к получателю, направление
которого задается адресами источника
и получателя информации; объемом
передаваемой информации и его
составляющими.
Можно выделить следующие информационные потоки (ИП):
информационный поток из внешней среды (1) в систему управления, который можно разделить на две составляющие:
нормативная информация, создаваемая государственными учреж-дениями в области законодательства;
информация о конъюнктуре рынка, создаваемая конкурентами, потребителями, поставщиками;
информация, передаваемая из системы управления во внешнюю среду (2): отчетная информация, прежде всего, финансовая информация в государственные органы, инвесторам, кредиторам, потребителям; маркетинговая информация потенциальным потребителям;
информационный поток из системы управления на объект управления (3 – прямая кибернетическая связь) – совокупность плановой, нормативной и распорядительной информации для осуществления хозяйственных процессов;
информация от объекта управления в систему управления (4 – обратная кибернетическая связь) – учетная информация о состоянии объекта управления (сырье, материалы, денежные, энергетические, трудовые ресурсы, готовая продукция и выполненные услуги) в результате выполнения хозяйственных процессов.
КИС этими информационными потоками связывает воедино три компонента: объект управления, систему управления и внешнюю среду, рассматривая каждого из них и как источник, и как потребителя информации.
КИС накапливает и перерабатывает поступающую учетную информацию и имеющиеся нормативы и планы в аналитическую информацию, служащую основой для прогнозирования развития объекта управления, корректировки его целей и создания планов для нового цикла воспроизводства.
Формы проявления информационных потоков можно свести к следующим видам: бумажный документ, электронный документ, визуальный документ (фотографии, кинопленка, телевидение и т. д.), вербальные (устные) сообщения (разговор, радио, телефон), структурированная информация из баз данных.
Как и материальные, информационные потоки характеризуются источником возникновения, объемными и качественными показателями, скоростью передачи, ритмичностью, векторной направленностью и т.д. По отношению к системе они делятся на: внешние и внутренние информационные потоки. По предназначению – входные и выходные информационные потоки.
Данные могут обрабатываться и перемещаться тремя способами: по мере возникновения (потоком); с регулярной периодичностью – информация накапливается, затем обрабатывается и перемещается через заранее установленные интервалы времени; нерегулярно (по мере возникновения отдельных информационных совокупностей).
Следовательно, важнейшая особенность процесса управления заключается в его информационной природе.
С точки зрения информационных технологий, решение любой производственной или научной задачи описывается следующей технологической цепочкой: реальный объект – модель – алгоритм – программа – результаты – реальный объект. В этой цепочке важнейшую роль играет звено «модель», как необходимый, обязательный этап решения задачи. Под моделью при этом понимается некоторый образ реального объекта (системы), отражающий существенные его свойства и заменяющий объект в процессе решения задачи.
По форме представления модели можно классифицировать на:
вербальные (текстовые), описываемые предложениями на формализованном естественном языке;
математические, основанные на формальных языках, широко используемые математические методы;
информационные, описывающие информационные процессы (возникновение, передачу, преобразование и использование информации) в системах самой разнообразной природы.
В рамках информатики как самостоятельной науки выделяют класс информационных моделей. Информатика имеет самое непосредственное отношение и к математическим моделям, поскольку они являются основой применения компьютера при решении задач различной природы: математическая модель исследуемого процесса или явления на определенной стадии исследования преобразуется в компьютерную (вычислительную) модель, которая затем превращается в алгоритм и компьютерную программу.
Человек в своей деятельности имеет дело как с реальными объектами (предметами, процессами, явлениями), так и с их разного рода заместителями: материальными макетами, описаниями, рисунками, схемами, таблицами, компьютерными программами и т.д. Замена одного объекта другим, но сохраняющим все существенные свойства исходного объекта, называется моделированием, сам заменяющий объект – моделью исходного объекта. Цель моделирования – назначение будущей модели, т.е. определяются те свойства объекта-оригинала, которые будут воспроизведены в модели в рамках поставленной задачи.
Информационная модель – совокупность информации, характеризующая существенные свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.
Построению информационной модели предшествует:
выделение существенных частей и свойств объекта в рамках поставленной задачи;
определение связи между существенными компонентами в моделируемой системе;
определение ее структуры.
Свойства информационной модели:
Полнота;
Целостность и непротиворечивость;
Адекватность и согласованность с объектом;
Сложность;
Избыточность;
Архитектура.
Одним из наиболее часто используемых типов информационных моделей является прямоугольная таблица. Такой тип моделей применяется для описания ряда объектов, обладающих одинаковыми наборами свойств. С помощью таблиц могут быть построены как статические, так и динамические информационные модели в различных предметных областях. Широко известно табличное представление математических функций, статистических данных, расписаний поездов и самолетов, уроков и так далее.
Табличные информационные модели проще всего строить и исследовать на компьютере с помощью электронных таблиц и систем управления базами данных.
Группа объектов, обладающих одинаковыми свойствами, называется классом объектов. Внутри класса объектов могут быть выделены подклассы, объекты которых обладают некоторыми особенными свойствами, в свою очередь подклассы могут делиться на еще более мелкие группы и так далее. Такой процесс систематизации объектов называется процессом классификации.
В процессе классификации объектов часто строятся информационные модели, которые имеют иерархическую структуру. В биологии весь животный мир рассматривается как иерархическая система (тип, класс, отряд, семейство, род, вид), в информатике используется иерархическая файловая система и так далее.
Сетевые информационные модели применяются для отражения систем со сложной структурой, в которых связи между элементами имеют произвольный характер. Например, различные региональные части глобальной компьютерной сети Интернет (американская, европейская, российская, австралийская и так далее) связаны между собой высокоскоростными линиями связи. При этом одни части (например, американская) имеют прямые связи со всеми региональными частями Интернета, а другие могут обмениваться информацией между собой только через американскую часть (например, российская и австралийская). Связи между вершинами носят двусторонний характер и поэтому изображаются ненаправленными линиями (ребрами), а сам граф поэтому называется неориентированным.
В основе информационного моделирования лежат три основных постулата:
все состоит из элементов;
элементы имеют свойства;
элементы связаны между собой отношениями.
Объект, к которому применимы эти постулаты, может быть представлен информационной моделью.
Информационные модели можно проклассифицировать по различным признакам (табл. 2.1).
Таблица 2.1 – Классификация информационных моделей
Признак классификации |
Средства описания |
способ описания |
|
цели создания |
|
природа моделируемого объекта |
|
Информация как элемент управления и предмет управленческого труда должна обеспечить качественное представление о задачах и состоянии управляемой и управляющей систем и разработку моделей желаемого их состояния.
Процесс обслуживания информационных потоков является основной задачей информационного обеспечения КИС, в котором можно выделить два уровня характеристик:
элементный – совокупность данных, признаков, форм и видов носителей информации, их номенклатура;
системный – взаимосвязи и зависимости между классификационными группами информации, реализуемый в виде информационных моделей, в которых исследуется движение информационных потоков, их интенсивность и устойчивость, алгоритмы преобразования информации и соответствующая этим объективным условиям схема документооборота.
Для формирования информационного обеспечения необходимо:
ясное понимание целей, задач, функций всей системы управления организацией;
выявление движения информации, представленной для анализа в виде схем информационных потоков, от момента возникновения и до ее использования на различных уровнях управления;
наличие и использование системы классификации и кодирования;
владение методологией создания концептуальных информационно-логических моделей, отражающих взаимосвязи информации;
создание массивов информации на машинных носителях, что требует наличия современного технического обеспечения.
В основе создания информационного обеспечения лежит информационная модель организации (предприятия).
Для анализа информационного обеспечения наибольшее значение имеет выделение следующих разновидностей информации (табл. 2.2).
Таблица 2.2 – Классификация информации
Признак классификации |
Виды информации |
Специфика описываемых процессов |
производственно-экономическая, технико-технологическая, организационная, социальная, информация о внешних хозяйственных связях |
отношение к управляемому объекту |
внешняя, внутренняя |
роль в процессе управления |
учетная, директивная, нормативная, плановая, аналитическая |
степень обновляемости и порядок поступления |
|
степень агрегирования |
простая, интегрированная, усредненная и т.п. |
степень преобразования |
первичная, промежуточная, результативная |
специфика обработки |
бухгалтерская, статистическая, оперативно-производственная и т.п. |
Информационная модель является фундаментом для реализации бизнес-решений с использованием современных технологий.
Характеризуя информацию как предмет труда в процессе управления, необходимо учесть ряд ее особенностей. Прежде всего, информация – это предмет труда длительного пользования. При использовании она не теряет своих потребительских свойств, хотя и входит в состав готового продукта (управленческого решения), составляя его субстанцию. Такая особенность информации предлагает определенную специфику ее формирования. Наибольший объем работ и затрат связан с первоначальным созданием информационных массивов – баз данных. В последующем данные периодически обновляются, корректируются, но продолжают использоваться.
Информация относится к предметам труда особого рода также потому, что она способна к саморазвитию. Количественное накопление информации дает возможность более четко установить тенденцию развития управляемого объекта и выявить новые связи между отдельными классификационными группами информации. Это позволяет в качестве одного из важнейших принципов построения информационной системы сформулировать получение максимума производной при минимуме исходной информации.
Старение информации в ряде случаев связано с потерей ее ценности для конкретных условий и целей, но она может быть «омоложена» и вновь приобретает ценность с изменением условий. Определенную полезность сохраняет даже ретроспективная информация как база для анализа динамики.
Информация должна быть подготовлена к использованию. В зависимости от степени ее подготовленности может быть выделена первичная информация как набор данных, показателей, описывающих отдельные стороны процесса и его элементов, вторичная информация, прошедшая определенное упорядочение и классификацию.
В процессе организации информации принципиальное значение имеет расчленение ее на условно-постоянную, выполняющую роль нормативно-справочной и характеризующей процесс в статике, и переменную – в динамике. В связи с этим информационные модели могут быть разделены на группы:
информационные модели отдельных элементов и локальных процессов, описывающие статическое состояние объекта;
информационные модели динамики, характеризующие изменение отдельных элементов и процессов;
интегрированные информационные модели, описывающие определенные решения и имеющие активную направленность.
Процесс формирования информационного обеспечения включает несколько этапов:
описание состояния объекта, т.е. «физическая фотография», которое предполагает формирование набора технико-экономических показателей и параметров, характеризующих управляющую и управляемую системы и соответствующей их классификации;
построение справочников и классификаторов, содержащих постоянную информацию, т.е. формирование частных статических моделей;
отражение в информационных моделях динамики отдельных элементов и процессов. При этом количественное изменение предполагает корректировку информации, а качественное изменение – ее частичную или полную перестройку;
построение интегрированной информационной модели, отражающей взаимосвязь и динамику локальных процессов объекта управления.
В настоящее время успешно используется несколько методик анализа информационного обеспечения. Они различаются принятыми характеристиками количества информации (символы, записи, графостроки, документы и т.п.), методами и инструментами анализа. Наиболее разработанными можно считать следующие методы:
матричного моделирования процессов разработки данных;
графоаналитический метод исследования потоков информации.
описание потоков информации в виде графика типа дерева;
схем информационных связей плановых расчетов;
исследовательского анализа задач управления, разработанный на выявлении «коротких» потоков.
Наиболее полное и детальное отражение и анализ потоков информации можно получить с помощью информационных моделей, которые разрабатываются как матричные модели. При этом используются различные матрицы – материальные процессы и документооборот, документооборот и состав решений и задач на конкретном уровне управления, по определенным группам задач, по разным уровням управления и др.
Чаще других используются модели в виде матриц и графов. Оба эти способа моделирования предполагают выделение в информационной системе в виде самостоятельных компонентов исходных, промежуточных и конечных данных. Это позволяет изучать их изолированно, что имеет принципиальное значение для исследования потребности во внешней и внутрипроизводственной информации.
Матричные модели потоков циркулирующей информации могут быть построены в различных вариантах, но в качестве базовых выступают матрицы размерностью «документ на документ», «показатель на показатель». При этом документы могут рассматриваться как единые блоки.
В классическом виде матричные модели предназначены для анализа классификационных связей. Но они приемлемы также для изучения основных характеристик информационного обеспечения управленческого аппарата, потому что позволяют показать различные группировки видов и источников информации и способствуют более полному выявлению фактической обеспеченности и возможности улучшения задач разного вида.
Графоаналитический метод исследования информационных потоков основан на представлении их информационного графа и анализа его матрицы смежности. Графы могут быть построены на уровне документов, на уровне компонентов (исходные, промежуточные и внешние данные) и на синтетическом уровне (исходные и промежуточные данные, внешние и функциональные результаты).
Имея графы основных задач и процедур, решаемых в процессе управления, можно получить матрицу смежности графов, показывающую взаимосвязь задач и документов, используемых в управлении. Граф каждой задачи и конкретного уровня управления позволяет установить рациональную информационную преемственность, возможность использования промежуточных и конечных результатов данной задачи для других.
Структурный граф может использоваться для расчета объема информации.
Обеспечение рациональных связей между источниками и приемниками информации и путей ее циркулирования является одним из непременных условий эффективного функционирования системы управления. Относительное постоянство взаимозависимостей структурных подразделений позволяет выбирать рациональную структуру путей движения информации и наиболее эффективные технические средства для каждого канала связи.
