Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекии ПАХТ 4.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
2.04 Mб
Скачать

Кинетика процесса экстракции

(кинетические закономерности) определяются основными законами массопередачи. При этом основными стадиями этого процесса являются: переход распределяемого вещества из среды к поверхности капли, а затем внутрь нее или, наоборот, из капли через поверхность раздела фаз в ядро потока среды.

При этом различают три случая.

1. Диффузионное сопротивление сосредоточено в дисперсионной среде.

В этом случае коэффициент массопередачи Кх может быть принят равным коэффициенту массоотдачи среды βс, т. е. Кх ≈ βс, а количество переданного вещества определяется из соотношения

М = βсхср*F

Коэффициент массоотдачи для этого случая рассчитывается по критериальному уравнению

Nuдиф.с = βс*d/Dдиф.с = f*(Peдиф.с),

где Nuдиф.с – диффузионный критерий Нуссельта для среды; Dдиф.с – коэффициент диффузии распределяемого вещества в среде; d — диаметр капли; Peдиф.с = wd/Dдиф.с - диффузионное число Пекле для среды; w —относительная скорость движения капли и среды.

2. Диффузионное сопротивление сосредоточено в дисперсной фазе (капля).

Коэффициент массопередачи Ку может быть принят равным коэффициенту массоотдачи дисперсной фазы βдисп, т. е. Ку≈ βдисп, а количество переданного вещества определяется из соотношения

М = βдисп*Δуср* F

Коэффициент массоотдачи для этого случая определяется из уравнения

Nuдиф.д = βс*d/Dдиф.д = f*(Peдиф.д),

где Nuдиф.д – диффузионный критерий Нуссельта для дисперсной фазы; Dдиф.д – коэффициент диффузии распределяемого вещества в капле; Peдиф.д = wd/Dдиф.д – диффузионное число Пекле для капли.

  1. Диффузионные сопротивления в среде и капле соизмеримы.

В этом случае количество переданного вещества определяется в соответствии с основным уравнением массопередачи (9.7), а ко­эффициенты массопередачи рассчитываются по выражениям

Лекция 28 Основные методы экстракции. Расчет процесса. Конструкции экстракторов.

Способы организации процесса

Э. осуществляют в аппаратах, наз. экстракторами, с однократным и многократным контактом фаз. Соответственно различают однократную (одноступенчатую) и многократную (многоступенчатую) экстракцию; при этом ступенями разделения служат отдельные аппараты или их секции.

Многократная экстракция, наиболее распространенная в промышленности, проводится непрерывно и по способу движения фаз подразделяется на противоточную, полупротивоточную и перекрестноточную. Чаще всего применяют противоточную экстракцию одним экстрагентом (рис. 3) с числом ступеней обычно 5-10. Для трудноразделяемых компонентов (напр., близких по свойствам лантаноидов) число ступеней достигает 70-100.

Рис. 3. Схема противоточной многократной экстракции: 1-4, ..., n - экстракторы.

Четкость разделения исходной смеси можно повысить, используя следующие способы. При жидкостной экстракции с обратной флегмой экстрагент и рафинат частично отделяются от соответственного экстракта и исходного раствора; далее определенные доли этих фракций обратно возвращаются в экстрактор навстречу уходящим потокам (процесс проводят подобно ректификации). При жидкостной экстракции с двумя несмешивающимися экстрагентами каждый из них избирательно растворяет какой-либо компонент или группу компонентов экстракционном системы.

Реже используют полупротивоток и перекрестный ток. При полупротивоточной экстракции одна фаза "неподвижна" (не перемещается со ступени на ступень), а другая фаза последовательно проходит все ступени каскада (см. ниже), вымывая компоненты раствора в порядке убывания коэф. Полупротивоток применяют для извлечения и разделения компонентов, присутствующих в системе в очень малых количествах. При необходимости более полного извлечения целевого компонента из исходного раствора иногда используют перекрестноточную экстракцию (рис. 4): исчерпываемая фаза движется последовательно вдоль ступеней каскада, а извлекающая фаза поступает на каждую ступень и с нее же выводится.

Рис. 4. Схема перекрестноточной многократной экстракции (Э - экстракторы).

Однократная экстракция, осуществляемая периодически или непрерывно, возможна лишь при высоких значениях и применяется преимущественно для аналитических целей. Примером промышленной реализации одноступенчатого процесса может служить мембранная экстракция, основанная на использовании мембран жидких и сочетающая одновременно прямой процесс и реэкстракцию. Роль мембран выполняет слой орг. жидкой фазы, разделяющий два водных раствора - исчерпываемый и извлекающий. Жидкая мембрана обычно содержит активный компонент - экстрагент, служащий для переноса целевых компонентов из исчерпываемой фазы в извлекающую. Разновидность мембранной жидкостная экстракция - экстракция во множественных эмульсиях вода - масло - вода.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]